
Ocelot
Release 16.0

Tom Pallister, Ocelot Core team at ThreeMammals

Feb 16, 2024

INTRODUCTION

1 Big Picture 3
1.1 Basic Implementation . 3
1.2 With IdentityServer . 4
1.3 Multiple Instances . 4
1.4 With Consul . 5
1.5 With Service Fabric . 5

2 Getting Started 7
2.1 .NET Core 3.1 . 7
2.2 .NET Core 1.0 . 9

3 Contributing 11

4 Not Supported 13

5 Configuration 15
5.1 Multiple environments . 16
5.2 Merging configuration files . 17
5.3 Store configuration in consul . 17
5.4 Reload JSON config on change . 18
5.5 Follow Redirects / Use CookieContainer . 19
5.6 SSL Errors . 19
5.7 MaxConnectionsPerServer . 19
5.8 React to Configuration Changes . 19

6 Routing 21
6.1 Catch All . 22
6.2 Upstream Host . 23
6.3 Priority . 23
6.4 Dynamic Routing . 24
6.5 Query Strings . 24

7 Request Aggregation 27
7.1 Advanced register your own Aggregators . 27
7.2 Basic expecting JSON from Downstream Services . 29

8 GraphQL 31

9 Service Discovery 33
9.1 Consul . 33
9.2 Eureka . 35

i

9.3 Dynamic Routing . 35

10 Service Fabric 39

11 Kubernetes 41

12 Authentication 43
12.1 JWT Tokens . 44
12.2 Identity Server Bearer Tokens . 44
12.3 Okta . 45
12.4 Allowed Scopes . 46

13 Authorization 47

14 Websockets 49
14.1 SignalR . 49
14.2 Supported . 50
14.3 Not Supported . 50

15 Administration 53
15.1 Providing your own IdentityServer . 53
15.2 Internal IdentityServer . 54
15.3 Administration API . 55

16 Rate Limiting 57

17 Caching 59
17.1 Your own caching . 59

18 Quality of Service 61

19 Headers Transformation 63
19.1 Add to Request . 63
19.2 Add to Response . 63
19.3 Find and Replace . 64
19.4 Pre Downstream Request . 64
19.5 Post Downstream Request . 64
19.6 Placeholders . 64
19.7 Handling 302 Redirects . 65
19.8 X-Forwarded-For . 65
19.9 Future . 65

20 HTTP Method Transformation 67

21 Claims Transformation 69
21.1 Claims to Claims Transformation . 69
21.2 Claims to Headers Tranformation . 70
21.3 Claims to Query String Parameters Transformation . 70
21.4 Claims to Downstream Path Transformation . 70

22 Logging 71
22.1 Warning . 71

23 Tracing 73
23.1 OpenTracing . 73
23.2 Butterfly . 74

ii

24 Request Id / Correlation Id 75

25 Middleware Injection and Overrides 77

26 Load Balancer 79
26.1 Configuration . 79
26.2 Service Discovery . 80
26.3 CookieStickySessions . 80
26.4 Custom Load Balancers . 81

27 Delegating Handlers 85
27.1 Usage . 85

28 Http Error Status Codes 87

29 Overview 89

30 Building 91

31 Tests 93

32 Release process 95
32.1 Notes . 96

iii

iv

Ocelot, Release 16.0

Thanks for taking a look at the Ocelot documentation. Please use the left hand nav to get around. I would suggest
taking a look at introduction first.

INTRODUCTION 1

Ocelot, Release 16.0

2 INTRODUCTION

CHAPTER

ONE

BIG PICTURE

Ocelot is aimed at people using .NET running a micro services / service orientated architecture that need a unified
point of entry into their system.

In particular I want easy integration with IdentityServer reference and bearer tokens.

Ocelot is a bunch of middlewares in a specific order.

Ocelot manipulates the HttpRequest object into a state specified by its configuration until it reaches a request builder
middleware where it creates a HttpRequestMessage object which is used to make a request to a downstream service.
The middleware that makes the request is the last thing in the Ocelot pipeline. It does not call the next middleware.
There is a piece of middleware that maps the HttpResponseMessage onto the HttpResponse object and that is returned
to the client. That is basically it with a bunch of other features.

The following are configurations that you use when deploying Ocelot.

1.1 Basic Implementation

3

Ocelot, Release 16.0

1.2 With IdentityServer

1.3 Multiple Instances

4 Chapter 1. Big Picture

Ocelot, Release 16.0

1.4 With Consul

1.5 With Service Fabric

1.4. With Consul 5

Ocelot, Release 16.0

6 Chapter 1. Big Picture

CHAPTER

TWO

GETTING STARTED

Ocelot is designed to work with .NET Core only and is currently on netcoreapp3.1.

2.1 .NET Core 3.1

Install NuGet package
Install Ocelot and it’s dependencies using nuget. You will need to create a netcoreapp3.1 project and bring the package
into it. Then follow the Startup below and Configuration sections to get up and running.

Install-Package Ocelot

All versions can be found here.

Configuration
The following is a very basic ocelot.json. It won’t do anything but should get Ocelot starting.

{
"Routes": [],
"GlobalConfiguration": {

"BaseUrl": "https://api.mybusiness.com"
}

}

If you want some example that actually does something use the following:

{
"Routes": [

{
"DownstreamPathTemplate": "/todos/{id}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "jsonplaceholder.typicode.com",
"Port": 443

}
],
"UpstreamPathTemplate": "/todos/{id}",
"UpstreamHttpMethod": ["Get"]
}

],
(continues on next page)

7

https://www.nuget.org/packages/Ocelot/

Ocelot, Release 16.0

(continued from previous page)

"GlobalConfiguration": {
"BaseUrl": "https://localhost:5000"

}
}

The most important thing to note here is BaseUrl. Ocelot needs to know the URL it is running under in order to do
Header find & replace and for certain administration configurations. When setting this URL it should be the external
URL that clients will see Ocelot running on e.g. If you are running containers Ocelot might run on the url http:
//123.12.1.1:6543 but has something like nginx in front of it responding on https://api.mybusiness.com. In this case
the Ocelot base url should be https://api.mybusiness.com.

If you are using containers and require Ocelot to respond to clients on http://123.12.1.1:6543 then you can do this,
however if you are deploying multiple Ocelot’s you will probably want to pass this on the command line in some kind
of script. Hopefully whatever scheduler you are using can pass the IP.

Program
Then in your Program.cs you will want to have the following. The main things to note are AddOcelot() (adds ocelot
services), UseOcelot().Wait() (sets up all the Ocelot middleware).

using System.IO;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Hosting;
using Ocelot.DependencyInjection;
using Ocelot.Middleware;

namespace OcelotBasic
{

public class Program
{

public static void Main(string[] args)
{

new WebHostBuilder()
.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json", true, true)
.AddJsonFile("ocelot.json")
.AddEnvironmentVariables();

})
.ConfigureServices(s => {

s.AddOcelot();
})
.ConfigureLogging((hostingContext, logging) =>
{

//add your logging
})
.UseIISIntegration()

(continues on next page)

8 Chapter 2. Getting Started

http://123.12.1.1:6543
http://123.12.1.1:6543
https://api.mybusiness.com
https://api.mybusiness.com
http://123.12.1.1:6543

Ocelot, Release 16.0

(continued from previous page)

.Configure(app =>
{

app.UseOcelot().Wait();
})
.Build()
.Run();

}
}

}

Note: When using ASP.NET Core 2.2 and you want to use In-Process hosting, replace **.
→˓UseIISIntegration()** with **.UseIIS()**, otherwise you'll get startup errors.

2.2 .NET Core 1.0

Install NuGet package
Install Ocelot and it’s dependecies using nuget. You will need to create a netcoreapp1.0+ projct and bring the package
into it. Then follow the Startup below and Configuration sections to get up and running. Please note you will need to
choose one of the Ocelot packages from the NuGet feed.

All versions can be found here.

Configuration
The following is a very basic ocelot.json. It won’t do anything but should get Ocelot starting.

{
"Routes": [],
"GlobalConfiguration": {}

}

Program
Then in your Program.cs you will want to have the following.

public class Program
{

public static void Main(string[] args)
{

IWebHostBuilder builder = new WebHostBuilder();

builder.ConfigureServices(s => {
});

builder.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.UseStartup<Startup>();

var host = builder.Build();

host.Run();
(continues on next page)

2.2. .NET Core 1.0 9

https://www.nuget.org/packages/Ocelot/

Ocelot, Release 16.0

(continued from previous page)

}
}

Startup
An example startup using a json file for configuration can be seen below.

public class Startup
{

public Startup(IHostingEnvironment env)
{

var builder = new ConfigurationBuilder()
.SetBasePath(env.ContentRootPath)
.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
.AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
.AddJsonFile("ocelot.json")
.AddEnvironmentVariables();

Configuration = builder.Build();
}

public IConfigurationRoot Configuration { get; }

public void ConfigureServices(IServiceCollection services)
{

services.AddOcelot(Configuration);
}

public void Configure(IApplicationBuilder app)
{

app.UseOcelot().Wait();
}

}

This is pretty much all you need to get going.

10 Chapter 2. Getting Started

CHAPTER

THREE

CONTRIBUTING

Pull requests, issues and commentary welcome! No special process just create a request and get in touch either via
gitter or create an issue.

11

Ocelot, Release 16.0

12 Chapter 3. Contributing

CHAPTER

FOUR

NOT SUPPORTED

Ocelot does not support. . .

• Chunked Encoding - Ocelot will always get the body size and return Content-Length header. Sorry if this doesn’t
work for your use case!

• Forwarding a host header - The host header that you send to Ocelot will not be forwarded to the downstream
service. Obviously this would break everything :(

• Swagger - I have looked multiple times at building swagger.json out of the Ocelot ocelot.json but it doesnt fit
into the vision I have for Ocelot. If you would like to have Swagger in Ocelot then you must roll your own
swagger.json and do the following in your Startup.cs or Program.cs. The code sample below registers a piece of
middleware that loads your hand rolled swagger.json and returns it on /swagger/v1/swagger.json. It then registers
the SwaggerUI middleware from Swashbuckle.AspNetCore

app.Map("/swagger/v1/swagger.json", b =>
{

b.Run(async x => {
var json = File.ReadAllText("swagger.json");
await x.Response.WriteAsync(json);

});
});
app.UseSwaggerUI(c =>
{

c.SwaggerEndpoint("/swagger/v1/swagger.json", "Ocelot");
});

app.UseOcelot().Wait();

The main reasons why I don’t think Swagger makes sense is we already hand roll our definition in ocelot.json. If we
want people developing against Ocelot to be able to see what routes are available then either share the ocelot.json with
them (This should be as easy as granting access to a repo etc) or use the Ocelot administration API so that they can
query Ocelot for the configuration.

In addition to this many people will configure Ocelot to proxy all traffic like /products/{everything} to their product
service and you would not be describing what is actually available if you parsed this and turned it into a Swagger path.
Also Ocelot has no concept of the models that the downstream services can return and linking to the above problem
the same endpoint can return multiple models. Ocelot does not know what models might be used in POST, PUT etc
so it all gets a bit messy and finally the Swashbuckle package doesnt reload swagger.json if it changes during runtime.
Ocelot’s configuration can change during runtime so the Swagger and Ocelot information would not match. Unless I
rolled my own Swagger implementation.

If the user wants something to easily test against the Ocelot API then I suggest using Postman as a simple way to do
this. It might even be possible to write something that maps ocelot.json to the postman json spec. However I don’t
intend to do this.

13

Ocelot, Release 16.0

14 Chapter 4. Not Supported

CHAPTER

FIVE

CONFIGURATION

An example configuration can be found here. There are two sections to the configuration. An array of Routes and
a GlobalConfiguration. The Routes are the objects that tell Ocelot how to treat an upstream request. The Global
configuration is a bit hacky and allows overrides of Route specific settings. It’s useful if you don’t want to manage lots
of Route specific settings.

{
"Routes": [],
"GlobalConfiguration": {}

}

Here is an example Route configuration, You don’t need to set all of these things but this is everything that is available
at the moment:

{
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamHttpMethod": "",
"DownstreamHttpVersion": "",
"AddHeadersToRequest": {},
"AddClaimsToRequest": {},
"RouteClaimsRequirement": {},
"AddQueriesToRequest": {},
"RequestIdKey": "",
"FileCacheOptions": {

"TtlSeconds": 0,
"Region": ""

},
"RouteIsCaseSensitive": false,
"ServiceName": "",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51876,

}
],
"QoSOptions": {

"ExceptionsAllowedBeforeBreaking": 0,
(continues on next page)

15

https://github.com/ThreeMammals/Ocelot/blob/master/test/Ocelot.ManualTest/ocelot.json

Ocelot, Release 16.0

(continued from previous page)

"DurationOfBreak": 0,
"TimeoutValue": 0

},
"LoadBalancer": "",
"RateLimitOptions": {

"ClientWhitelist": [],
"EnableRateLimiting": false,
"Period": "",
"PeriodTimespan": 0,
"Limit": 0

},
"AuthenticationOptions": {

"AuthenticationProviderKey": "",
"AllowedScopes": []

},
"HttpHandlerOptions": {

"AllowAutoRedirect": true,
"UseCookieContainer": true,
"UseTracing": true,
"MaxConnectionsPerServer": 100

},
"DangerousAcceptAnyServerCertificateValidator": false

}

More information on how to use these options is below..

5.1 Multiple environments

Like any other asp.net core project Ocelot supports configuration file names such as configuration.dev.json, configura-
tion.test.json etc. In order to implement this add the following to you

.ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json", true, true)
.AddJsonFile("ocelot.json")
.AddJsonFile($"configuration.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json")
.AddEnvironmentVariables();

})

Ocelot will now use the environment specific configuration and fall back to ocelot.json if there isn’t one.

You also need to set the corresponding environment variable which is ASPNETCORE_ENVIRONMENT. More info
on this can be found in the asp.net core docs.

16 Chapter 5. Configuration

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments

Ocelot, Release 16.0

5.2 Merging configuration files

This feature was requested in Issue 296 and allows users to have multiple configuration files to make managing large
configurations easier.

Instead of adding the configuration directly e.g. AddJsonFile(“ocelot.json”) you can call AddOcelot() like below.

.ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json", true, true)
.AddOcelot(hostingContext.HostingEnvironment)
.AddEnvironmentVariables();

})

In this scenario Ocelot will look for any files that match the pattern (?i)ocelot.([a-zA-Z0-9]*).json and then merge these
together. If you want to set the GlobalConfiguration property you must have a file called ocelot.global.json.

The way Ocelot merges the files is basically load them, loop over them, add any Routes, add any AggregateRoutes and
if the file is called ocelot.global.json add the GlobalConfiguration aswell as any Routes or AggregateRoutes. Ocelot
will then save the merged configuration to a file called ocelot.json and this will be used as the source of truth while
ocelot is running.

At the moment there is no validation at this stage it only happens when Ocelot validates the final merged configuration.
This is something to be aware of when you are investigating problems. I would advise always checking what is in
ocelot.json if you have any problems.

You can also give Ocelot a specific path to look in for the configuration files like below.

.ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json", true, true)
.AddOcelot("/foo/bar", hostingContext.HostingEnvironment)
.AddEnvironmentVariables();

})

Ocelot needs the HostingEnvironment so it knows to exclude anything environment specific from the algorithm.

5.3 Store configuration in consul

The first thing you need to do is install the NuGet package that provides Consul support in Ocelot.

Install-Package Ocelot.Provider.Consul

Then you add the following when you register your services Ocelot will attempt to store and retrieve its configuration
in consul KV store.

5.2. Merging configuration files 17

https://github.com/ThreeMammals/Ocelot/issues/296

Ocelot, Release 16.0

services
.AddOcelot()
.AddConsul()
.AddConfigStoredInConsul();

You also need to add the following to your ocelot.json. This is how Ocelot finds your Consul agent and interacts to load
and store the configuration from Consul.

"GlobalConfiguration": {
"ServiceDiscoveryProvider": {

"Host": "localhost",
"Port": 9500

}
}

I decided to create this feature after working on the Raft consensus algorithm and finding out its super hard. Why not
take advantage of the fact Consul already gives you this! I guess it means if you want to use Ocelot to its fullest you
take on Consul as a dependency for now.

This feature has a 3 second ttl cache before making a new request to your local consul agent.

5.4 Reload JSON config on change

Ocelot supports reloading the json configuration file on change. e.g. the following will recreate Ocelots internal
configuration when the ocelot.json file is updated manually.

config.AddJsonFile("ocelot.json", optional: false, reloadOnChange: true);

5.4.1 Configuration Key

If you are using Consul for configuration (or other providers in the future) you might want to key your configurations
so you can have multiple configurations :) This feature was requested in issue 346! In order to specify the key you need
to set the ConfigurationKey property in the ServiceDiscoveryProvider section of the configuration json file e.g.

"GlobalConfiguration": {
"ServiceDiscoveryProvider": {

"Host": "localhost",
"Port": 9500,
"ConfigurationKey": "Oceolot_A"

}
}

In this example Ocelot will use Oceolot_A as the key for your configuration when looking it up in Consul.

If you do not set the ConfigurationKey Ocelot will use the string InternalConfiguration as the key.

18 Chapter 5. Configuration

https://github.com/ThreeMammals/Ocelot/issues/346

Ocelot, Release 16.0

5.5 Follow Redirects / Use CookieContainer

Use HttpHandlerOptions in Route configuration to set up HttpHandler behavior:

1. AllowAutoRedirect is a value that indicates whether the request should follow redirection responses. Set it true
if the request should automatically follow redirection responses from the Downstream resource; otherwise false.
The default value is false.

2. UseCookieContainer is a value that indicates whether the handler uses the CookieContainer property to store
server cookies and uses these cookies when sending requests. The default value is false. Please note that if you
are using the CookieContainer Ocelot caches the HttpClient for each downstream service. This means that all
requests to that DownstreamService will share the same cookies. Issue 274 was created because a user noticed
that the cookies were being shared. I tried to think of a nice way to handle this but I think it is impossible. If you
don’t cache the clients that means each request gets a new client and therefore a new cookie container. If you clear
the cookies from the cached client container you get race conditions due to inflight requests. This would also
mean that subsequent requests don’t use the cookies from the previous response! All in all not a great situation.
I would avoid setting UseCookieContainer to true unless you have a really really good reason. Just look at your
response headers and forward the cookies back with your next request!

5.6 SSL Errors

If you want to ignore SSL warnings / errors set the following in your Route config.

"DangerousAcceptAnyServerCertificateValidator": true

I don’t recommend doing this, I suggest creating your own certificate and then getting it trusted by your local / remote
machine if you can.

5.7 MaxConnectionsPerServer

This controls how many connections the internal HttpClient will open. This can be set at Route or global level.

5.8 React to Configuration Changes

Resolve IOcelotConfigurationChangeTokenSource from the DI container if you wish to react to changes to the Ocelot
configuration via the Ocelot.Administration API or ocelot.json being reloaded from the disk. You may either poll the
change token’s HasChanged property, or register a callback with the RegisterChangeCallback method.

5.8.1 Polling the HasChanged property

5.8.2 Registering a callback

5.8.3 DownstreamHttpVersion

Ocelot allows you to choose the HTTP version it will use to make the proxy request. It can be set as “1.0”, “1.1” or
“2.0”.

5.5. Follow Redirects / Use CookieContainer 19

https://github.com/ThreeMammals/Ocelot/issues/274

Ocelot, Release 16.0

20 Chapter 5. Configuration

CHAPTER

SIX

ROUTING

Ocelot’s primary functionality is to take incoming http requests and forward them on to a downstream service. Ocelot
currently only supports this in the form of another http request (in the future this could be any transport mechanism).

Ocelot’s describes the routing of one request to another as a Route. In order to get anything working in Ocelot you need
to set up a Route in the configuration.

{
"Routes": [
]

}

To configure a Route you need to add one to the Routes json array.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 80,

}
],

"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put", "Delete"]

}

The DownstreamPathTemplate, DownstreamScheme and DownstreamHostAndPorts define the URL that a request will
be forwarded to.

DownstreamHostAndPorts is a collection that defines the host and port of any downstream services that you wish to
forward requests to. Usually this will just contain a single entry but sometimes you might want to load balance requests
to your downstream services and Ocelot allows you add more than one entry and then select a load balancer.

The UpstreamPathTemplate is the URL that Ocelot will use to identify which DownstreamPathTemplate to use for a
given request. The UpstreamHttpMethod is used so Ocelot can distinguish between requests with different HTTP verbs
to the same URL. You can set a specific list of HTTP Methods or set an empty list to allow any of them.

In Ocelot you can add placeholders for variables to your Templates in the form of {something}. The placeholder
variable needs to be present in both the DownstreamPathTemplate and UpstreamPathTemplate properties. When it is
Ocelot will attempt to substitute the value in the UpstreamPathTemplate placeholder into the DownstreamPathTemplate
for each request Ocelot processes.

You can also do a catch all type of Route e.g.

21

Ocelot, Release 16.0

{
"DownstreamPathTemplate": "/api/{everything}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 80,

}
],

"UpstreamPathTemplate": "/{everything}",
"UpstreamHttpMethod": ["Get", "Post"]

}

This will forward any path + query string combinations to the downstream service after the path /api.

The default ReRouting configuration is case insensitive!

In order to change this you can specify on a per Route basis the following setting.

"RouteIsCaseSensitive": true

This means that when Ocelot tries to match the incoming upstream url with an upstream template the evaluation will
be case sensitive.

6.1 Catch All

Ocelot’s routing also supports a catch all style routing where the user can specify that they want to match all traffic.

If you set up your config like below, all requests will be proxied straight through. The placeholder {url} name is not
significant, any name will work.

{
"DownstreamPathTemplate": "/{url}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 80,

}
],

"UpstreamPathTemplate": "/{url}",
"UpstreamHttpMethod": ["Get"]

}

The catch all has a lower priority than any other Route. If you also have the Route below in your config then Ocelot
would match it before the catch all.

{
"DownstreamPathTemplate": "/",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "10.0.10.1",

(continues on next page)

22 Chapter 6. Routing

Ocelot, Release 16.0

(continued from previous page)

"Port": 80,
}

],
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Get"]

}

6.2 Upstream Host

This feature allows you to have Routes based on the upstream host. This works by looking at the host header the client
has used and then using this as part of the information we use to identify a Route.

In order to use this feature please add the following to your config.

{
"DownstreamPathTemplate": "/",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "10.0.10.1",
"Port": 80,

}
],

"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Get"],
"UpstreamHost": "somedomain.com"

}

The Route above will only be matched when the host header value is somedomain.com.

If you do not set UpstreamHost on a Route then any host header will match it. This means that if you have two Routes
that are the same, apart from the UpstreamHost, where one is null and the other set Ocelot will favour the one that has
been set.

This feature was requested as part of Issue 216 .

6.3 Priority

You can define the order you want your Routes to match the Upstream HttpRequest by including a “Priority” property
in ocelot.json See Issue 270 for reference

{
"Priority": 0

}

0 is the lowest priority, Ocelot will always use 0 for /{catchAll} Routes and this is still hardcoded. After that you are
free to set any priority you wish.

e.g. you could have

6.2. Upstream Host 23

https://github.com/ThreeMammals/Ocelot/pull/216
https://github.com/ThreeMammals/Ocelot/pull/270

Ocelot, Release 16.0

{
"UpstreamPathTemplate": "/goods/{catchAll}"
"Priority": 0

}

and

{
"UpstreamPathTemplate": "/goods/delete"
"Priority": 1

}

In the example above if you make a request into Ocelot on /goods/delete Ocelot will match /goods/delete Route. Pre-
viously it would have matched /goods/{catchAll} (because this is the first Route in the list!).

6.4 Dynamic Routing

This feature was requested in issue 340.

The idea is to enable dynamic routing when using a service discovery provider so you don’t have to provide the Route
config. See the docs service-discovery if this sounds interesting to you.

6.5 Query Strings

Ocelot allows you to specify a query string as part of the DownstreamPathTemplate like the example below.

{
"Routes": [

{
"DownstreamPathTemplate": "/api/subscriptions/{subscriptionId}/updates?

→˓unitId={unitId}",
"UpstreamPathTemplate": "/api/units/{subscriptionId}/{unitId}/updates",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 50110

}
]

}
],
"GlobalConfiguration": {
}

}

In this example Ocelot will use the value from the {unitId} in the upstream path template and add it to the downstream
request as a query string parameter called unitId!

24 Chapter 6. Routing

https://github.com/ThreeMammals/Ocelot/issues/340

Ocelot, Release 16.0

Ocelot will also allow you to put query string parameters in the UpstreamPathTemplate so you can match certain queries
to certain services.

{
"Routes": [

{
"DownstreamPathTemplate": "/api/units/{subscriptionId}/{unitId}/updates",
"UpstreamPathTemplate": "/api/subscriptions/{subscriptionId}/updates?unitId=

→˓{unitId}",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 50110

}
]

}
],
"GlobalConfiguration": {
}

}

In this example Ocelot will only match requests that have a matching url path and the query string starts with uni-
tId=something. You can have other queries after this but you must start with the matching parameter. Also Ocelot will
swap the {unitId} parameter from the query string and use it in the downstream request path.

6.5. Query Strings 25

Ocelot, Release 16.0

26 Chapter 6. Routing

CHAPTER

SEVEN

REQUEST AGGREGATION

Ocelot allows you to specify Aggregate Routes that compose multiple normal Routes and map their responses into one
object. This is usually where you have a client that is making multiple requests to a server where it could just be one.
This feature allows you to start implementing back end for a front end type architecture with Ocelot.

This feature was requested as part of Issue 79 and further improvements were made as part of Issue 298.

In order to set this up you must do something like the following in your ocelot.json. Here we have specified two normal
Routes and each one has a Key property. We then specify an Aggregate that composes the two Routes using their keys
in the RouteKeys list and says then we have the UpstreamPathTemplate which works like a normal Route. Obviously
you cannot have duplicate UpstreamPathTemplates between Routes and Aggregates. You can use all of Ocelot’s normal
Route options apart from RequestIdKey (explained in gotchas below).

7.1 Advanced register your own Aggregators

Ocelot started with just the basic request aggregation and since then we have added a more advanced method that let’s
the user take in the responses from the downstream services and then aggregate them into a response object.

The ocelot.json setup is pretty much the same as the basic aggregation approach apart from you need to add an Aggre-
gator property like below.

{
"Routes": [

{
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/laura",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51881

}
],
"Key": "Laura"

},
{

"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/tom",

(continues on next page)

27

https://github.com/ThreeMammals/Ocelot/pull/79
https://github.com/ThreeMammals/Ocelot/issue/298

Ocelot, Release 16.0

(continued from previous page)

"UpstreamHttpMethod": [
"Get"

],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51882

}
],
"Key": "Tom"

}
],
"Aggregates": [

{
"RouteKeys": [

"Tom",
"Laura"

],
"UpstreamPathTemplate": "/",
"Aggregator": "FakeDefinedAggregator"

}
]

}

Here we have added an aggregator called FakeDefinedAggregator. Ocelot is going to look for this aggregator when it
tries to aggregate this Route.

In order to make the aggregator available we must add the FakeDefinedAggregator to the OcelotBuilder like below.

services
.AddOcelot()
.AddSingletonDefinedAggregator<FakeDefinedAggregator>();

Now when Ocelot tries to aggregate the Route above it will find the FakeDefinedAggregator in the container and use it to
aggregate the Route. Because the FakeDefinedAggregator is registered in the container you can add any dependencies
it needs into the container like below.

services.AddSingleton<FooDependency>();

services
.AddOcelot()
.AddSingletonDefinedAggregator<FooAggregator>();

In this example FooAggregator takes a dependency on FooDependency and it will be resolved by the container.

In addition to this Ocelot lets you add transient aggregators like below.

services
.AddOcelot()
.AddTransientDefinedAggregator<FakeDefinedAggregator>();

In order to make an Aggregator you must implement this interface.

28 Chapter 7. Request Aggregation

Ocelot, Release 16.0

public interface IDefinedAggregator
{

Task<DownstreamResponse> Aggregate(List<HttpContext> responses);
}

With this feature you can pretty much do whatever you want because the HttpContext objects contain the results of
all the aggregate requests. Please note if the HttpClient throws an exception when making a request to a Route in the
aggregate then you will not get a HttpContext for it but you would for any that succeed. If it does throw an exception
this will be logged.

7.2 Basic expecting JSON from Downstream Services

{
"Routes": [

{
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/laura",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51881

}
],
"Key": "Laura"

},
{

"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/tom",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51882

}
],
"Key": "Tom"

}
],
"Aggregates": [

{
"RouteKeys": [

"Tom",
"Laura"

],
(continues on next page)

7.2. Basic expecting JSON from Downstream Services 29

Ocelot, Release 16.0

(continued from previous page)

"UpstreamPathTemplate": "/"
}

]
}

You can also set UpstreamHost and RouteIsCaseSensitive in the Aggregate configuration. These behave the same as
any other Routes.

If the Route /tom returned a body of {“Age”: 19} and /laura returned {“Age”: 25} the the response after aggregation
would be as follows.

{"Tom":{"Age": 19},"Laura":{"Age": 25}}

At the moment the aggregation is very simple. Ocelot just gets the response from your downstream service and sticks
it into a json dictionary as above. With the Route key being the key of the dictionary and the value the response body
from your downstream service. You can see that the object is just JSON without any pretty spaces etc.

All headers will be lost from the downstream services response.

Ocelot will always return content type application/json with an aggregate request.

If you downstream services return a 404 the aggregate will just return nothing for that downstream service. It will not
change the aggregate response into a 404 even if all the downstreams return a 404.

7.2.1 Gotcha’s / Further info

You cannot use Routes with specific RequestIdKeys as this would be crazy complicated to track.

Aggregation only supports the GET HTTP Verb.

30 Chapter 7. Request Aggregation

CHAPTER

EIGHT

GRAPHQL

OK you got me Ocelot doesn’t directly support GraphQL but so many people have asked about it I wanted to show how
easy it is to integrate the graphql-dotnet library.

Please see the sample project OcelotGraphQL. Using a combination of the graphql-dotnet project and Ocelot’s Dele-
gatingHandler features this is pretty easy to do. However I do not intend to integrate more closely with GraphQL at the
moment. Check out the samples readme and that should give you enough instruction on how to do this!

Good luck and have fun :>

31

https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/ThreeMammals/Ocelot/tree/master/samples/OcelotGraphQL

Ocelot, Release 16.0

32 Chapter 8. GraphQL

CHAPTER

NINE

SERVICE DISCOVERY

Ocelot allows you to specify a service discovery provider and will use this to find the host and port for the downstream
service Ocelot is forwarding a request to. At the moment this is only supported in the GlobalConfiguration section
which means the same service discovery provider will be used for all Routes you specify a ServiceName for at Route
level.

9.1 Consul

The first thing you need to do is install the NuGet package that provides Consul support in Ocelot.

Install-Package Ocelot.Provider.Consul

Then add the following to your ConfigureServices method.

s.AddOcelot()
.AddConsul();

The following is required in the GlobalConfiguration. The Provider is required and if you do not specify a host and
port the Consul default will be used.

Please note the Scheme option defauls to HTTP. It was added in this PR. It defaults to HTTP to not introduce a breaking
change.

"ServiceDiscoveryProvider": {
"Scheme": "https",
"Host": "localhost",
"Port": 8500,
"Type": "Consul"

}

In the future we can add a feature that allows Route specfic configuration.

In order to tell Ocelot a Route is to use the service discovery provider for its host and port you must add the ServiceName
and load balancer you wish to use when making requests downstream. At the moment Ocelot has a RoundRobin and
LeastConnection algorithm you can use. If no load balancer is specified Ocelot will not load balance requests.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put"],
"ServiceName": "product",

(continues on next page)

33

https://github.com/ThreeMammals/Ocelot/pull/1154

Ocelot, Release 16.0

(continued from previous page)

"LoadBalancerOptions": {
"Type": "LeastConnection"

},
}

When this is set up Ocelot will lookup the downstream host and port from the service discover provider and load balance
requests across any available services.

A lot of people have asked me to implement a feature where Ocelot polls Consul for latest service information rather
than per request. If you want to poll Consul for the latest services rather than per request (default behaviour) then you
need to set the following configuration.

"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8500,
"Type": "PollConsul",
"PollingInterval": 100

}

The polling interval is in milliseconds and tells Ocelot how often to call Consul for changes in service configuration.

Please note there are tradeoffs here. If you poll Consul it is possible Ocelot will not know if a service is down depending
on your polling interval and you might get more errors than if you get the latest services per request. This really depends
on how volatile your services are. I doubt it will matter for most people and polling may give a tiny performance
improvement over calling Consul per request (as sidecar agent). If you are calling a remote Consul agent then polling
will be a good performance improvement.

Your services need to be added to Consul something like below (C# style but hopefully this make sense). . .The only
important thing to note is not to add http or https to the Address field. I have been contacted before about not accepting
scheme in Address and accepting scheme in address. After reading this I don’t think the scheme should be in there.

Or

"Service": {
"ID": "some-id",
"Service": "some-service-name",
"Address": "localhost",
"Port": 8080

}

9.1.1 ACL Token

If you are using ACL with Consul Ocelot supports adding the X-Consul-Token header. In order so this to work you
must add the additional property below.

"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8500,
"Token": "footoken",
"Type": "Consul"

}

Ocelot will add this token to the Consul client that it uses to make requests and that is then used for every request.

34 Chapter 9. Service Discovery

https://www.consul.io/docs/agent/services.html

Ocelot, Release 16.0

9.2 Eureka

This feature was requested as part of Issue 262 . to add support for Netflix’s Eureka service discovery provider. The
main reason for this is it is a key part of Steeltoe which is something to do with Pivotal! Anyway enough of the
background.

The first thing you need to do is install the NuGet package that provides Eureka support in Ocelot.

Install-Package Ocelot.Provider.Eureka

Then add the following to your ConfigureServices method.

s.AddOcelot()
.AddEureka();

Then in order to get this working add the following to ocelot.json..

"ServiceDiscoveryProvider": {
"Type": "Eureka"

}

And following the guide Here you may also need to add some stuff to appsettings.json. For example the json below
tells the steeltoe / pivotal services where to look for the service discovery server and if the service should register with
it.

"eureka": {
"client": {
"serviceUrl": "http://localhost:8761/eureka/",
"shouldRegisterWithEureka": false,
"shouldFetchRegistry": true
}

}

I am told that if shouldRegisterWithEureka is false then shouldFetchRegistry will defaut to true so you don’t need it
explicitly but left it in there.

Ocelot will now register all the necessary services when it starts up and if you have the json above will register itself
with Eureka. One of the services polls Eureka every 30 seconds (default) and gets the latest service state and persists
this in memory. When Ocelot asks for a given service it is retrieved from memory so performance is not a big problem.
Please note that this code is provided by the Pivotal.Discovery.Client NuGet package so big thanks to them for all the
hard work.

Ocelot will use the scheme (http/https) set in Eureka if these values are not provided in ocelot.json

9.3 Dynamic Routing

This feature was requested in issue 340. The idea is to enable dynamic routing when using a service discovery provider
(see that section of the docs for more info). In this mode Ocelot will use the first segment of the upstream path to
lookup the downstream service with the service discovery provider.

An example of this would be calling Ocelot with a url like https://api.mywebsite.com/product/products. Ocelot will
take the first segment of the path which is product and use it as a key to look up the service in Consul. If Consul returns
a service Ocelot will request it on whatever host and port comes back from Consul plus the remaining path segments
in this case products thus making the downstream call http://hostfromconsul:portfromconsul/products. Ocelot will
apprend any query string to the downstream url as normal.

9.2. Eureka 35

https://github.com/ThreeMammals/Ocelot/issues/262
https://steeltoe.io/
https://pivotal.io/platform
https://steeltoe.io/docs/steeltoe-discovery/
https://github.com/ThreeMammals/Ocelot/issues/340
https://api.mywebsite.com/product/products
http://hostfromconsul:portfromconsul/products

Ocelot, Release 16.0

In order to enable dynamic routing you need to have 0 Routes in your config. At the moment you cannot mix dynamic
and configuration Routes. In addition to this you need to specify the Service Discovery provider details as outlined
above and the downstream http/https scheme as DownstreamScheme.

In addition to that you can set RateLimitOptions, QoSOptions, LoadBalancerOptions and HttpHandlerOptions, Down-
streamScheme (You might want to call Ocelot on https but talk to private services over http) that will be applied to all
of the dynamic Routes.

The config might look something like

{
"Routes": [],
"Aggregates": [],
"GlobalConfiguration": {

"RequestIdKey": null,
"ServiceDiscoveryProvider": {

"Host": "localhost",
"Port": 8500,
"Type": "Consul",
"Token": null,
"ConfigurationKey": null

},
"RateLimitOptions": {

"ClientIdHeader": "ClientId",
"QuotaExceededMessage": null,
"RateLimitCounterPrefix": "ocelot",
"DisableRateLimitHeaders": false,
"HttpStatusCode": 429

},
"QoSOptions": {

"ExceptionsAllowedBeforeBreaking": 0,
"DurationOfBreak": 0,
"TimeoutValue": 0

},
"BaseUrl": null,

"LoadBalancerOptions": {
"Type": "LeastConnection",
"Key": null,
"Expiry": 0

},
"DownstreamScheme": "http",
"HttpHandlerOptions": {

"AllowAutoRedirect": false,
"UseCookieContainer": false,
"UseTracing": false

}
}

}

Ocelot also allows you to set DynamicRoutes which lets you set rate limiting rules per downstream service. This is
useful if you have for example a product and search service and you want to rate limit one more than the other. An
example of this would be as follows.

{
"DynamicRoutes": [

(continues on next page)

36 Chapter 9. Service Discovery

Ocelot, Release 16.0

(continued from previous page)

{
"ServiceName": "product",
"RateLimitRule": {

"ClientWhitelist": [],
"EnableRateLimiting": true,
"Period": "1s",
"PeriodTimespan": 1000.0,
"Limit": 3

}
}

],
"GlobalConfiguration": {

"RequestIdKey": null,
"ServiceDiscoveryProvider": {

"Host": "localhost",
"Port": 8523,
"Type": "Consul"

},
"RateLimitOptions": {

"ClientIdHeader": "ClientId",
"QuotaExceededMessage": "",
"RateLimitCounterPrefix": "",
"DisableRateLimitHeaders": false,
"HttpStatusCode": 428

}
"DownstreamScheme": "http",

}
}

This configuration means that if you have a request come into Ocelot on /product/* then dynamic routing will kick in
and ocelot will use the rate limiting set against the product service in the DynamicRoutes section.

Please take a look through all of the docs to understand these options.

9.3. Dynamic Routing 37

Ocelot, Release 16.0

38 Chapter 9. Service Discovery

CHAPTER

TEN

SERVICE FABRIC

If you have services deployed in Service Fabric you will normally use the naming service to access them.

The following example shows how to set up a Route that will work in Service Fabric. The most important thing is the
ServiceName which is made up of the Service Fabric application name then the specific service name. We also need
to set up the ServiceDiscoveryProvider in GlobalConfiguration. The example here shows a typical configuration. It
assumes service fabric is running on localhost and that the naming service is on port 19081.

The example below is taken from the samples folder so please check it if this doesnt make sense!

{
"Routes": [

{
"DownstreamPathTemplate": "/api/values",
"UpstreamPathTemplate": "/EquipmentInterfaces",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamScheme": "http",
"ServiceName": "OcelotServiceApplication/OcelotApplicationService",
}

],
"GlobalConfiguration": {

"RequestIdKey": "OcRequestId",
"ServiceDiscoveryProvider": {

"Host": "localhost",
"Port": 19081,
"Type": "ServiceFabric"

}
}

}

If you are using stateless / guest exe services ocelot will be able to proxy through the naming service without anything
else. However if you are using statefull / actor services you must send the PartitionKind and PartitionKey query string
values with the client request e.g.

GET http://ocelot.com/EquipmentInterfaces?PartitionKind=xxx&PartitionKey=xxx

There is no way for Ocelot to work these out for you.

39

http://ocelot.com/EquipmentInterfaces?PartitionKind=xxx&PartitionKey=xxx

Ocelot, Release 16.0

40 Chapter 10. Service Fabric

CHAPTER

ELEVEN

KUBERNETES

This feature was requested as part of Issue 345 . to add support for kubernetes’s provider.

Ocelot will call the k8s endpoints API in a given namespace to get all of the endpoints for a pod and then load balance
across them. Ocelot used to use the services api to send requests to the k8s service but this was changed in PR 1134
because the service did not load balance as expected.

The first thing you need to do is install the NuGet package that provides kubernetes support in Ocelot.

Install-Package Ocelot.Provider.Kubernetes

Then add the following to your ConfigureServices method.

s.AddOcelot()
.AddKubernetes();

If you have services deployed in kubernetes you will normally use the naming service to access them. Default usePod-
ServiceAccount = True, which means that ServiceAccount using Pod to access the service of the k8s cluster needs to
be ServiceAccount based on RBAC authorization

You can replicate a Permissive. Using RBAC role bindings. Permissive RBAC Permissions, k8s api server and token
will read from pod.

kubectl create clusterrolebinding permissive-binding –clusterrole=cluster-admin –user=admin –user=kubelet
–group=system:serviceaccounts

The following example shows how to set up a Route that will work in kubernetes. The most important thing is the
ServiceName which is made up of the kubernetes service name. We also need to set up the ServiceDiscoveryProvider
in GlobalConfiguration. The example here shows a typical configuration.

{
"Routes": [
{
"DownstreamPathTemplate": "/api/values",
"DownstreamScheme": "http",
"UpstreamPathTemplate": "/values",
"ServiceName": "downstreamservice",
"UpstreamHttpMethod": ["Get"]

}
],
"GlobalConfiguration": {
"ServiceDiscoveryProvider": {
"Host": "192.168.0.13",
"Port": 443,
"Token": "txpc696iUhbVoudg164r93CxDTrKRVWG",

(continues on next page)

41

https://github.com/ThreeMammals/Ocelot/issues/345
https://github.com/ThreeMammals/Ocelot/pull/1134
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#permissive-rbac-permissions

Ocelot, Release 16.0

(continued from previous page)

"Namespace": "dev",
"Type": "kube"

}
}

}

Service deployment in Namespace Dev , ServiceDiscoveryProvider type is kube, you also can set pollkube
ServiceDiscoveryProvider type.

Note: Host Port and Token are no longer in use

You use Ocelot to poll kubernetes for latest service information rather than per request. If you want to poll kubernetes
for the latest services rather than per request (default behaviour) then you need to set the following configuration.

"ServiceDiscoveryProvider": {
"Host": "192.168.0.13",
"Port": 443,
"Token": "txpc696iUhbVoudg164r93CxDTrKRVWG",
"Namespace": "dev",
"Type": "pollkube",
"PollingInterval": 100
}

The polling interval is in milliseconds and tells Ocelot how often to call kubernetes for changes in service configuration.

Please note there are tradeoffs here. If you poll kubernetes it is possible Ocelot will not know if a service is down
depending on your polling interval and you might get more errors than if you get the latest services per request. This
really depends on how volatile your services are. I doubt it will matter for most people and polling may give a tiny
performance improvement over calling kubernetes per request. There is no way for Ocelot to work these out for you.

If your downstream service resides in a different namespace you can override the global setting at the Route level by
specifying a ServiceNamespace.

{
"Routes": [
{
"DownstreamPathTemplate": "/api/values",
"DownstreamScheme": "http",
"UpstreamPathTemplate": "/values",
"ServiceName": "downstreamservice",
"ServiceNamespace": "downstream-namespace",
"UpstreamHttpMethod": ["Get"]

}
]

}

42 Chapter 11. Kubernetes

CHAPTER

TWELVE

AUTHENTICATION

In order to authenticate Routes and subsequently use any of Ocelot’s claims based features such as authorization or
modifying the request with values from the token. Users must register authentication services in their Startup.cs as
usual but they provide a scheme (authentication provider key) with each registration e.g.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";

services.AddAuthentication()
.AddJwtBearer(authenticationProviderKey, x =>
{
});

}

In this example TestKey is the scheme that this provider has been registered with. We then map this to a Route in the
configuration e.g.

"Routes": [{
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51876,

}
],
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Post"],
"RouteIsCaseSensitive": false,
"DownstreamScheme": "http",
"AuthenticationOptions": {

"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

When Ocelot runs it will look at this Routes AuthenticationOptions.AuthenticationProviderKey and check that there is
an Authentication provider registered with the given key. If there isn’t then Ocelot will not start up, if there is then the
Route will use that provider when it executes.

If a Route is authenticated Ocelot will invoke whatever scheme is associated with it while executing the authentication
middleware. If the request fails authentication Ocelot returns a http status code 401.

43

Ocelot, Release 16.0

12.1 JWT Tokens

If you want to authenticate using JWT tokens maybe from a provider like Auth0 you can register your authentication
middleware as normal e.g.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";

services.AddAuthentication()
.AddJwtBearer(authenticationProviderKey, x =>
{

x.Authority = "test";
x.Audience = "test";

});

services.AddOcelot();
}

Then map the authentication provider key to a Route in your configuration e.g.

"Routes": [{
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51876,

}
],
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Post"],
"RouteIsCaseSensitive": false,
"DownstreamScheme": "http",
"AuthenticationOptions": {

"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

12.2 Identity Server Bearer Tokens

In order to use IdentityServer bearer tokens, register your IdentityServer services as usual in ConfigureServices with a
scheme (key). If you don’t understand how to do this please consult the IdentityServer documentation.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";
Action<JwtBearerOptions> options = o =>

{
o.Authority = "https://whereyouridentityserverlives.com";
// etc

(continues on next page)

44 Chapter 12. Authentication

Ocelot, Release 16.0

(continued from previous page)

};

services.AddAuthentication()
.AddJwtBearer(authenticationProviderKey, options);

services.AddOcelot();
}

Then map the authentication provider key to a Route in your configuration e.g.

"Routes": [{
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 51876,

}
],
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Post"],
"RouteIsCaseSensitive": false,
"DownstreamScheme": "http",
"AuthenticationOptions": {

"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

12.3 Okta

Add the following to your startup Configure method:

app
.UseAuthentication()
.UseOcelot()
.Wait();

Add the following, at minimum, to your startup ConfigureServices method:

services
.AddAuthentication()
.AddJwtBearer(oktaProviderKey, options =>
{

options.Audience = configuration["Authentication:Okta:Audience"]; // Okta␣
→˓Authorization server Audience

options.Authority = configuration["Authentication:Okta:Server"]; // Okta␣
→˓Authorization Issuer URI URL e.g. https://{subdomain}.okta.com/oauth2/{authidentifier}

});
services.AddOcelot(configuration);

12.3. Okta 45

Ocelot, Release 16.0

NOTE: In order to get Ocelot to view the scope claim from Okta properly, you have to add the following to map the
default Okta “scp” claim to “scope”

// Map Okta scp to scope claims instead of http://schemas.microsoft.com/identity/claims/
→˓scope to allow ocelot to read/verify them
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Remove("scp");
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Add("scp", "scope");

Issue 446 that contains some code and examples that might help with Okta integration.

12.4 Allowed Scopes

If you add scopes to AllowedScopes Ocelot will get all the user claims (from the token) of the type scope and make
sure that the user has all of the scopes in the list.

This is a way to restrict access to a Route on a per scope basis.

46 Chapter 12. Authentication

https://github.com/ThreeMammals/Ocelot/issues/446

CHAPTER

THIRTEEN

AUTHORIZATION

Ocelot supports claims based authorization which is run post authentication. This means if you have a route you want
to authorize you can add the following to you Route configuration.

"RouteClaimsRequirement": {
"UserType": "registered"

}

In this example when the authorization middleware is called Ocelot will check to seeif the user has the claim type
UserType and if the value of that claim is registered. If it isn’t then the user will not be authorized and the response
will be 403 forbidden.

47

Ocelot, Release 16.0

48 Chapter 13. Authorization

CHAPTER

FOURTEEN

WEBSOCKETS

Ocelot supports proxying websockets with some extra bits. This functionality was requested in Issue 212.

In order to get websocket proxying working with Ocelot you need to do the following.

In your Configure method you need to tell your application to use WebSockets.

Configure(app =>
{

app.UseWebSockets();
app.UseOcelot().Wait();

})

Then in your ocelot.json add the following to proxy a Route using websockets.

{
"DownstreamPathTemplate": "/ws",
"UpstreamPathTemplate": "/",
"DownstreamScheme": "ws",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 5001

}
],

}

With this configuration set Ocelot will match any websocket traffic that comes in on / and proxy it to localhost:5001/ws.
To make this clearer Ocelot will receive messages from the upstream client, proxy these to the downstream service,
receive messages from the downstream service and proxy these to the upstream client.

14.1 SignalR

Ocelot supports proxying SignalR. This functionality was requested in Issue 344.

In order to get websocket proxying working with Ocelot you need to do the following.

Install Microsoft.AspNetCore.SignalR.Client 1.0.2 you can try other packages but this one is tested.

Do not run it in IISExpress or install the websockets feature in the IIS features

In your Configure method you need to tell your application to use SignalR.

49

https://github.com/ThreeMammals/Ocelot/issues/212
https://github.com/ThreeMammals/Ocelot/issues/344

Ocelot, Release 16.0

Configure(app =>
{

app.UseWebSockets();
app.UseOcelot().Wait();

})

Then in your ocelot.json add the following to proxy a Route using SignalR. Note normal Ocelot routing rules apply the
main thing is the scheme which is set to “ws”.

{
"Routes": [
{
"DownstreamPathTemplate": "/{catchAll}",
"DownstreamScheme": "ws",
"DownstreamHostAndPorts": [
{
"Host": "localhost",
"Port": 50000

}
],
"UpstreamPathTemplate": "/gateway/{catchAll}",
"UpstreamHttpMethod": ["GET", "POST", "PUT", "DELETE", "OPTIONS"]

}
]

}

With this configuration set Ocelot will match any SignalR traffic that comes in on / and proxy it to localhost:5001/ws.
To make this clearer Ocelot will receive messages from the upstream client, proxy these to the downstream service,
receive messages from the downstream service and proxy these to the upstream client.

14.2 Supported

1. Load Balancer

2. Routing

3. Service Discovery

This means that you can set up your downstream services running websockets and either have multiple DownstreamHo-
stAndPorts in your Route config or hook your Route into a service discovery provider and then load balance re-
quests. . .Which I think is pretty cool :)

14.3 Not Supported

Unfortunately a lot of Ocelot’s features are non websocket specific such as header and http client stuff. I’ve listed what
won’t work below.

1. Tracing

2. RequestId

3. Request Aggregation

50 Chapter 14. Websockets

Ocelot, Release 16.0

4. Rate Limiting

5. Quality of Service

6. Middleware Injection

7. Header Transformation

8. Delegating Handlers

9. Claims Transformation

10. Caching

11. Authentication - If anyone requests it we might be able to do something with basic authentication.

12. Authorization

I’m not 100% sure what will happen with this feature when it get’s into the wild so please make sure you test thoroughly!

14.3. Not Supported 51

Ocelot, Release 16.0

52 Chapter 14. Websockets

CHAPTER

FIFTEEN

ADMINISTRATION

Ocelot supports changing configuration during runtime via an authenticated HTTP API. This can be authenticated in
two ways either using Ocelot’s internal IdentityServer (for authenticating requests to the administration API only) or
hooking the administration API authentication into your own IdentityServer.

The first thing you need to do if you want to use the administration API is bring in the relavent NuGet package..

Install-Package Ocelot.Administration

This will bring down everything needed by the admin API.

15.1 Providing your own IdentityServer

All you need to do to hook into your own IdentityServer is add the following to your ConfigureServices method.

public virtual void ConfigureServices(IServiceCollection services)
{

Action<JwtBearerOptions> options = o =>
{

o.Authority = identityServerRootUrl;
o.RequireHttpsMetadata = false;
o.TokenValidationParameters = new TokenValidationParameters
{

ValidateAudience = false,
};
// etc....

};

services
.AddOcelot()
.AddAdministration("/administration", options);

}

You now need to get a token from your IdentityServer and use in subsequent requests to Ocelot’s administration API.

This feature was implemented for issue 228. It is useful because the IdentityServer authentication middleware needs
the URL of the IdentityServer. If you are using the internal IdentityServer it might not alaways be possible to have the
Ocelot URL.

53

https://github.com/ThreeMammals/Ocelot/issues/228

Ocelot, Release 16.0

15.2 Internal IdentityServer

The API is authenticated using bearer tokens that you request from Ocelot iteself. This is provided by the amazing
Identity Server project that I have been using for a few years now. Check them out.

In order to enable the administration section you need to do a few things. First of all add this to yourinitial Startup.cs.

The path can be anything you want and it is obviously reccomended don’t usea url you would like to route through with
Ocelot as this will not work. The administration uses theMapWhen functionality of asp.net core and all requests to
{root}/administration will be sent there not to the Ocelot middleware.

The secret is the client secret that Ocelot’s internal IdentityServer will use to authenticate requests to the administration
API. This can be whatever you want it to be!

public virtual void ConfigureServices(IServiceCollection services)
{

services
.AddOcelot()
.AddAdministration("/administration", "secret");

}

In order for the administration API to work, Ocelot / IdentityServer must be able to call itself for validation. This means
that you need to add the base url of Ocelot to global configuration if it is not default (http://localhost:5000). Please note
if you are using something like docker to host Ocelot it might not be able to call back to localhost etc and you need to
know what you are doing with docker networking in this scenario. Anyway this can be done as follows..

If you want to run on a different host and port locally..

"GlobalConfiguration": {
"BaseUrl": "http://localhost:55580"

}

or if Ocelot is exposed via dns

"GlobalConfiguration": {
"BaseUrl": "http://mydns.com"

}

Now if you went with the configuration options above and want to access the API you can use the postman scriptscalled
ocelot.postman_collection.json in the solution to change the Ocelot configuration. Obviously these will need to be
changed if you are running Ocelot on a different url to http://localhost:5000.

The scripts show you how to request a bearer token from ocelot and then use it to GET the existing configuration and
POST a configuration.

If you are running multiple Ocelot instances in a cluster then you need to use a certificate to sign the bearer tokens used
to access the administration API.

In order to do this you need to add two more environmental variables for each Ocelot in the cluster.

OCELOT_CERTIFICATE
The path to a certificate that can be used to sign the tokens. The certificate needs to be of the type X509 and
obviously Ocelot needs to be able to access it.

OCELOT_CERTIFICATE_PASSWORD
The password for the certificate.

Normally Ocelot just uses temporary signing credentials but if you set these environmental variables then it will use
the certificate. If all the other Ocelot instances in thecluster have the same certificate then you are good!

54 Chapter 15. Administration

https://github.com/IdentityServer/IdentityServer4
http://localhost:5000
http://localhost:5000

Ocelot, Release 16.0

15.3 Administration API

POST {adminPath}/connect/token
This gets a token for use with the admin area using the client credentials we talk about setting above. Under the hood
this calls into an IdentityServer hosted within Ocelot.

The body of the request is form-data as follows

client_id set as admin

client_secret set as whatever you used when setting up the administration services.

scope set as admin

grant_type set as client_credentials

GET {adminPath}/configuration
This gets the current Ocelot configuration. It is exactly the same JSON we use to set Ocelot up with in the first place.

POST {adminPath}/configuration
This overrwrites the existing configuration (should probably be a put!). I reccomend getting your config from the GET
endpoint, making any changes and posting it back. . . simples.

The body of the request is JSON and it is the same format as the FileConfiguration.cs that we use to set up Ocelot on
a file system.

Please note that if you want to use this API then the process running Ocelot must have permission to write to the disk
where your ocelot.json or ocelot.{environment}.json is located. This is because Ocelot will overwrite them on save.

DELETE {adminPath}/outputcache/{region}
This clears a region of the cache. If you are using a backplane it will clear all instances of the cache! Giving your the
ability to run a cluster of Ocelots and cache over all of them in memory and clear them all at the same time / just use a
distributed cache.

The region is whatever you set against the Region field in the FileCacheOptions section of the Ocelot configuration.

15.3. Administration API 55

Ocelot, Release 16.0

56 Chapter 15. Administration

CHAPTER

SIXTEEN

RATE LIMITING

Thanks to @catcherwong article for inspiring me to finally write this documentation.

Ocelot supports rate limiting of upstream requests so that your downstream services do not become overloaded. This
feature was added by @geffzhang on GitHub! Thanks very much.

OK so to get rate limiting working for a Route you need to add the following json to it.

"RateLimitOptions": {
"ClientWhitelist": [],
"EnableRateLimiting": true,
"Period": "1s",
"PeriodTimespan": 1,
"Limit": 1

}

ClientWhitelist - This is an array that contains the whitelist of the client. It means that the client in this array will not
be affected by the rate limiting.

EnableRateLimiting - This value specifies enable endpoint rate limiting.

Period - This value specifies the period that the limit applies to, such as 1s, 5m, 1h,1d and so on. If you make more
requests in the period than the limit allows then you need to wait for PeriodTimespan to elapse before you make another
request.

PeriodTimespan - This value specifies that we can retry after a certain number of seconds.

Limit - This value specifies the maximum number of requests that a client can make in a defined period.

You can also set the following in the GlobalConfiguration part of ocelot.json

"RateLimitOptions": {
"DisableRateLimitHeaders": false,
"QuotaExceededMessage": "Customize Tips!",
"HttpStatusCode": 999,
"ClientIdHeader" : "Test"

}

DisableRateLimitHeaders - This value specifies whether X-Rate-Limit and Retry-After headers are disabled.

QuotaExceededMessage - This value specifies the exceeded message.

HttpStatusCode - This value specifies the returned HTTP Status code when rate limiting occurs.

ClientIdHeader - Allows you to specifiy the header that should be used to identify clients. By default it is “ClientId”

57

http://www.c-sharpcorner.com/article/building-api-gateway-using-ocelot-in-asp-net-core-rate-limiting-part-four/

Ocelot, Release 16.0

58 Chapter 16. Rate Limiting

CHAPTER

SEVENTEEN

CACHING

Ocelot supports some very rudimentary caching at the moment provider by the CacheManager project. This is an
amazing project that is solving a lot of caching problems. I would reccomend using this package to cache with Ocelot.

The following example shows how to add CacheManager to Ocelot so that you can do output caching.

First of all add the following NuGet package.

Install-Package Ocelot.Cache.CacheManager

This will give you access to the Ocelot cache manager extension methods.

The second thing you need to do something like the following to your ConfigureServices..

s.AddOcelot()
.AddCacheManager(x =>
{

x.WithDictionaryHandle();
})

Finally in order to use caching on a route in your Route configuration add this setting.

"FileCacheOptions": { "TtlSeconds": 15, "Region": "somename" }

In this example ttl seconds is set to 15 which means the cache will expire after 15 seconds.

If you look at the example here you can see how the cache manager is setup and then passed into the Ocelot AddCache-
Manager configuration method. You can use any settings supported by the CacheManager package and just pass them
in.

Anyway Ocelot currently supports caching on the URL of the downstream service and setting a TTL in seconds to
expire the cache. You can also clear the cache for a region by calling Ocelot’s administration API.

17.1 Your own caching

If you want to add your own caching method implement the following interfaces and register them in DI e.g. services.
AddSingleton<IOcelotCache<CachedResponse>, MyCache>()

IOcelotCache<CachedResponse> this is for output caching.

IOcelotCache<FileConfiguration> this is for caching the file configuration if you are calling something remote
to get your config such as Consul.

Please dig into the Ocelot source code to find more. I would really appreciate it if anyone wants to implement Redis,
memcache etc..

59

https://github.com/MichaCo/CacheManager
https://github.com/ThreeMammals/Ocelot/blob/master/test/Ocelot.ManualTest/Program.cs

Ocelot, Release 16.0

60 Chapter 17. Caching

CHAPTER

EIGHTEEN

QUALITY OF SERVICE

Ocelot supports one QoS capability at the current time. You can set on a per Route basis if you want to use a circuit
breaker when making requests to a downstream service. This uses an awesome .NET library called Polly check them
out here.

The first thing you need to do if you want to use the administration API is bring in the relevant NuGet package..

Install-Package Ocelot.Provider.Polly

Then in your ConfigureServices method

public virtual void ConfigureServices(IServiceCollection services)
{

services
.AddOcelot()
.AddPolly();

}

Then add the following section to a Route configuration.

"QoSOptions": {
"ExceptionsAllowedBeforeBreaking":3,
"DurationOfBreak":1000,
"TimeoutValue":5000

}

You must set a number greater than 0 against ExceptionsAllowedBeforeBreaking for this rule to be implemented.
Duration of break means the circuit breaker will stay open for 1 second after it is tripped. TimeoutValue means if a
request takes more than 5 seconds it will automatically be timed out.

You can set the TimeoutValue in isolation of the ExceptionsAllowedBeforeBreaking and DurationOfBreak options.

"QoSOptions": {
"TimeoutValue":5000

}

There is no point setting the other two in isolation as they affect each other :)

If you do not add a QoS section QoS will not be used however Ocelot will default to a 90 second timeout on all
downstream requests. If someone needs this to be configurable open an issue.

61

https://github.com/App-vNext/Polly

Ocelot, Release 16.0

62 Chapter 18. Quality of Service

CHAPTER

NINETEEN

HEADERS TRANSFORMATION

Ocelot allows the user to transform headers pre and post downstream request. At the moment Ocelot only supports find
and replace. This feature was requested GitHub #190 and I decided that it was going to be useful in various ways.

19.1 Add to Request

This feature was requestes in GitHub #313.

If you want to add a header to your upstream request please add the following to a Route in your ocelot.json:

"UpstreamHeaderTransform": {
"Uncle": "Bob"

}

In the example above a header with the key Uncle and value Bob would be send to to the upstream service.

Placeholders are supported too (see below).

19.2 Add to Response

This feature was requested in GitHub #280.

If you want to add a header to your downstream response please add the following to a Route in ocelot.json..

"DownstreamHeaderTransform": {
"Uncle": "Bob"

},

In the example above a header with the key Uncle and value Bob would be returned by Ocelot when requesting the
specific Route.

If you want to return the Butterfly APM trace id then do something like the following..

"DownstreamHeaderTransform": {
"AnyKey": "{TraceId}"

},

63

https://github.com/ThreeMammals/Ocelot/issues/190
https://github.com/ThreeMammals/Ocelot/issues/313
https://github.com/ThreeMammals/Ocelot/issues/280

Ocelot, Release 16.0

19.3 Find and Replace

In order to transform a header first we specify the header key and then the type of transform we want e.g.

"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

The key is “Test” and the value is “http://www.bbc.co.uk/, http://ocelot.com/”. The value is saying replace http://www.
bbc.co.uk/ with http://ocelot.com/. The syntax is {find}, {replace}. Hopefully pretty simple. There are examples below
that explain more.

19.4 Pre Downstream Request

Add the following to a Route in ocelot.json in order to replace http://www.bbc.co.uk/ with http://ocelot.com/. This
header will be changed before the request downstream and will be sent to the downstream server.

"UpstreamHeaderTransform": {
"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

},

19.5 Post Downstream Request

Add the following to a Route in ocelot.json in order to replace http://www.bbc.co.uk/ with http://ocelot.com/. This
transformation will take place after Ocelot has received the response from the downstream service.

"DownstreamHeaderTransform": {
"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

},

19.6 Placeholders

Ocelot allows placeholders that can be used in header transformation.

{RemoteIpAddress} - This will find the clients IP address using _httpContextAcces-
sor.HttpContext.Connection.RemoteIpAddress.ToString() so you will get back some IP. {BaseUrl} - This will
use Ocelot’s base url e.g. http://localhost:5000 as its value. {DownstreamBaseUrl} - This will use the downstream
services base url e.g. http://localhost:5000 as its value. This only works for DownstreamHeaderTransform at the
moment. {TraceId} - This will use the Butterfly APM Trace Id. This only works for DownstreamHeaderTransform at
the moment. {UpstreamHost} - This will look for the incoming Host header.

64 Chapter 19. Headers Transformation

http://www.bbc.co.uk/
http://ocelot.com/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://ocelot.com/
http://www.bbc.co.uk/
http://ocelot.com/
http://www.bbc.co.uk/
http://ocelot.com/
http://localhost:5000
http://localhost:5000

Ocelot, Release 16.0

19.7 Handling 302 Redirects

Ocelot will by default automatically follow redirects however if you want to return the location header to the client
you might want to change the location to be Ocelot not the downstream service. Ocelot allows this with the following
configuration.

"DownstreamHeaderTransform": {
"Location": "http://www.bbc.co.uk/, http://ocelot.com/"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

},

or you could use the BaseUrl placeholder.

"DownstreamHeaderTransform": {
"Location": "http://localhost:6773, {BaseUrl}"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

},

finally if you are using a load balancer with Ocelot you will get multiple downstream base urls so the above would not
work. In this case you can do the following.

"DownstreamHeaderTransform": {
"Location": "{DownstreamBaseUrl}, {BaseUrl}"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

},

19.8 X-Forwarded-For

An example of using {RemoteIpAddress} placeholder. . .

"UpstreamHeaderTransform": {
"X-Forwarded-For": "{RemoteIpAddress}"

}

19.9 Future

Ideally this feature would be able to support the fact that a header can have multiple values. At the moment it just
assumes one. It would also be nice if it could multi find and replace e.g.

"DownstreamHeaderTransform": {
"Location": "[{one,one},{two,two}"

},
"HttpHandlerOptions": {

(continues on next page)

19.7. Handling 302 Redirects 65

Ocelot, Release 16.0

(continued from previous page)

"AllowAutoRedirect": false,
},

If anyone wants to have a go at this please help yourself!!

66 Chapter 19. Headers Transformation

CHAPTER

TWENTY

HTTP METHOD TRANSFORMATION

Ocelot allows the user to change the HTTP request method that will be used when making a request to a downstream
service.

This achieved by setting the following Route configuration:

{
"DownstreamPathTemplate": "/{url}",
"UpstreamPathTemplate": "/{url}",
"UpstreamHttpMethod": [

"Get"
],
"DownstreamHttpMethod": "POST",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [

{
"Host": "localhost",
"Port": 53271

}
],

}

The key property here is DownstreamHttpMethod which is set as POST and the Route will only match on GET as set
by UpstreamHttpMethod.

This feature can be useful when interacting with downstream apis that only support POST and you want to present
some kind of RESTful interface.

67

Ocelot, Release 16.0

68 Chapter 20. HTTP Method Transformation

CHAPTER

TWENTYONE

CLAIMS TRANSFORMATION

Ocelot allows the user to access claims and transform them into headers, query string parameters, other claims and
change downstream paths. This is only available once a user has been authenticated.

After the user is authenticated we run the claims to claims transformation middleware. This allows the user to transform
claims before the authorization middleware is called. After the user is authorized first we call the claims to headers
middleware, thenthe claims to query string parameters middleware, and Finally the claims to downstream pathmiddle-
ware.

The syntax for performing the transforms is the same for each process. In the Route configuration a json dictionary is
added with a specific name either AddClaimsToRequest, AddHeadersToRequest, AddQueriesToRequest, or Change-
DownstreamPathTemplate.

Note: I’m not a hotshot programmer so have no idea if this syntax is good. . .

Within this dictionary the entries specify how Ocelot should transform things! The key to the dictionary is going to
become the key of either a claim, header or query parameter. In the case of ChangeDownstreamPathTemplate, the key
must be also specified in the DownstreamPathTemplate, in order to do the transformation.

The value of the entry is parsed to logic that will perform the transform. First ofall a dictionary accessor is specified e.g.
Claims[CustomerId]. This means we want to access the claims and get the CustomerId claim type. Next is a greater
than (>)symbol which is just used to split the string. The next entry is either value or value with an indexer. If value is
specified Ocelot will just take the value and add it to the transform. If the value has an indexer Ocelot will look for a
delimiter which is provided after another greater than symbol. Ocelot will then split the value on the delimiter and add
whatever was at the index requested to the transform.

21.1 Claims to Claims Transformation

Below is an example configuration that will transforms claims to claims

"AddClaimsToRequest": {
"UserType": "Claims[sub] > value[0] > |",
"UserId": "Claims[sub] > value[1] > |"

}

This shows a transforms where Ocelot looks at the users sub claim and transforms it into UserType and UserId claims.
Assuming the sub looks like this “usertypevalue|useridvalue”.

69

Ocelot, Release 16.0

21.2 Claims to Headers Tranformation

Below is an example configuration that will transforms claims to headers

"AddHeadersToRequest": {
"CustomerId": "Claims[sub] > value[1] > |"

}

This shows a transform where Ocelot looks at the users sub claim and transforms it into a CustomerId header. Assuming
the sub looks like this “usertypevalue|useridvalue”.

21.3 Claims to Query String Parameters Transformation

Below is an example configuration that will transforms claims to query string parameters

"AddQueriesToRequest": {
"LocationId": "Claims[LocationId] > value",

}

This shows a transform where Ocelot looks at the users LocationId claim and add it as a query string parameter to be
forwarded onto the downstream service.

21.4 Claims to Downstream Path Transformation

Below is an example configuration that will transform claims to downstream path custom placeholders

"UpstreamPathTemplate": "/api/users/me/{everything}",
"DownstreamPathTemplate": "/api/users/{userId}/{everything}",
"ChangeDownstreamPathTemplate": {

"userId": "Claims[sub] > value[1] > |",
}

This shows a transform where Ocelot looks at the users userId claim and substitutes the value to the “{userId}” place-
holder specified in the DownstreamPathTemplate. Take into account that the key specified in the ChangeDownstream-
PathTemplate must be the same than the placeholder specified in the DownstreamPathTemplate.

Note: if a key specified in the ChangeDownstreamPathTemplate does not exist as a placeholder in DownstreamPathTem-
plate it will fail at runtime returning an error in the response.

70 Chapter 21. Claims Transformation

CHAPTER

TWENTYTWO

LOGGING

Ocelot uses the standard logging interfaces ILoggerFactory / ILogger<T> at the moment. This is encapsulated in IO-
celotLogger / IOcelotLoggerFactory with an implementation for the standard asp.net core logging stuff at the moment.
This is because Ocelot add’s some extra info to the logs such as request id if it is configured.

There is a global error handler that should catch any exceptions thrown and log them as errors.

Finally if logging is set to trace level Ocelot will log starting, finishing and any middlewares that throw an exception
which can be quite useful.

The reason for not just using bog standard framework logging is that I could not work out how to override the request
id that get’s logged when setting IncludeScopes to true for logging settings. Nicely onto the next feature.

22.1 Warning

If you are logging to Console you will get terrible performance. I have had so many issues about performance issues
with Ocelot and it is always logging level Debug, logging to Console :) Make sure you are logging to something proper
in production :)

71

Ocelot, Release 16.0

72 Chapter 22. Logging

CHAPTER

TWENTYTHREE

TRACING

This page details how to perform distributed tracing with Ocelot.

23.1 OpenTracing

Ocelot providers tracing functionality from the excellent OpenTracing C# project. The code for the Ocelot integration
can be found here.

The example below uses Jaeger C# client to provide the tracer used in Ocelot.

services.AddSingleton<ITracer>(sp =>
{

var loggerFactory = sp.GetService<ILoggerFactory>();
Configuration config = new Configuration(context.HostingEnvironment.ApplicationName,␣

→˓loggerFactory);

var tracer = config.GetTracer();
GlobalTracer.Register(tracer);
return tracer;

});

services
.AddOcelot()
.AddOpenTracing();

Then in your ocelot.json add the following to the Route you want to trace..

"HttpHandlerOptions": {
"UseTracing": true

},

Ocelot will now send tracing information to Jaeger when this Route is called.

73

https://github.com/opentracing/opentracing-csharp
https://github.com/ThreeMammals/Ocelot.Tracing.OpenTracing
https://github.com/jaegertracing/jaeger-client-csharp

Ocelot, Release 16.0

23.2 Butterfly

Ocelot providers tracing functionality from the excellent Butterfly project. The code for the Ocelot integration can be
found here.

In order to use the tracing please read the Butterfly documentation.

In ocelot you need to do the following if you wish to trace a Route.

Install-Package Ocelot.Tracing.Butterfly

In your ConfigureServices method

services
.AddOcelot()
// this comes from Ocelot.Tracing.Butterfly package
.AddButterfly(option =>
{

//this is the url that the butterfly collector server is running on...
option.CollectorUrl = "http://localhost:9618";
option.Service = "Ocelot";

});

Then in your ocelot.json add the following to the Route you want to trace..

"HttpHandlerOptions": {
"UseTracing": true

},

Ocelot will now send tracing information to Butterfly when this Route is called.

74 Chapter 23. Tracing

https://github.com/liuhaoyang/butterfly
https://github.com/ThreeMammals/Ocelot.Tracing.Butterfly

CHAPTER

TWENTYFOUR

REQUEST ID / CORRELATION ID

Ocelot supports a client sending a request id in the form of a header. If set Ocelot willuse the requestid for logging
as soon as it becomes available in the middleware pipeline. Ocelot will also forward the request id with the specified
header to the downstream service.

You can still get the asp.net core request id in the logs if you set IncludeScopes true in your logging config.

In order to use the request id feature you have two options.

Global

In your ocelot.json set the following in the GlobalConfiguration section. This will be used for all requests into Ocelot.

"GlobalConfiguration": {
"RequestIdKey": "OcRequestId"

}

I recommend using the GlobalConfiguration unless you really need it to be Route specific.

Route

If you want to override this for a specific Route add the following to ocelot.json for the specific Route.

"RequestIdKey": "OcRequestId"

Once Ocelot has identified the incoming requests matching Route object it will set the request id based on the Route
configuration.

This can lead to a small gotcha. If you set a GlobalConfiguration it is possible to get one request id until the Route is
identified and then another after that because the request id key can change. This is by design and is the best solution I
can think of at the moment. In this case the OcelotLogger will show the request id and previous request id in the logs.

Below is an example of the logging when set at Debug level for a normal request..

dbug: Ocelot.Errors.Middleware.ExceptionHandlerMiddleware[0]
requestId: asdf, previousRequestId: no previous request id, message: ocelot␣

→˓pipeline started,
dbug: Ocelot.DownstreamRouteFinder.Middleware.DownstreamRouteFinderMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message: upstream url␣
→˓path is {upstreamUrlPath},
dbug: Ocelot.DownstreamRouteFinder.Middleware.DownstreamRouteFinderMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message: downstream␣
→˓template is {downstreamRoute.Data.Route.DownstreamPath},
dbug: Ocelot.RateLimit.Middleware.ClientRateLimitMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message:␣
→˓EndpointRateLimiting is not enabled for Ocelot.Values.PathTemplate,

(continues on next page)

75

Ocelot, Release 16.0

(continued from previous page)

dbug: Ocelot.Authorization.Middleware.AuthorizationMiddleware[0]
requestId: 1234, previousRequestId: asdf, message: /posts/{postId} route does not␣

→˓require user to be authorized,
dbug: Ocelot.DownstreamUrlCreator.Middleware.DownstreamUrlCreatorMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: downstream url is
→˓{downstreamUrl.Data.Value},
dbug: Ocelot.Request.Middleware.HttpRequestBuilderMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: setting upstream request,
dbug: Ocelot.Requester.Middleware.HttpRequesterMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: setting http response message,
dbug: Ocelot.Responder.Middleware.ResponderMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: no pipeline errors, setting and␣
→˓returning completed response,
dbug: Ocelot.Errors.Middleware.ExceptionHandlerMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: ocelot pipeline finished,

76 Chapter 24. Request Id / Correlation Id

CHAPTER

TWENTYFIVE

MIDDLEWARE INJECTION AND OVERRIDES

Warning use with caution. If you are seeing any exceptions or strange behavior in your middleware pipeline and you
are using any of the following. Remove them and try again!

When setting up Ocelot in your Startup.cs you can provide some additional middleware and override middleware. This
is done as follows.

var configuration = new OcelotPipelineConfiguration
{

PreErrorResponderMiddleware = async (ctx, next) =>
{

await next.Invoke();
}

};

app.UseOcelot(configuration);

In the example above the provided function will run before the first piece of Ocelot middleware. This allows a user to
supply any behaviors they want before and after the Ocelot pipeline has run. This means you can break everything so
use at your own pleasure!

The user can set functions against the following.

• PreErrorResponderMiddleware - Already explained above.

• PreAuthenticationMiddleware - This allows the user to run pre authentication logic and then call Ocelot’s au-
thentication middleware.

• AuthenticationMiddleware - This overrides Ocelots authentication middleware.

• PreAuthorizationMiddleware - This allows the user to run pre authorization logic and then call Ocelot’s autho-
rization middleware.

• AuthorizationMiddleware - This overrides Ocelots authorization middleware.

• PreQueryStringBuilderMiddleware - This allows the user to manipulate the query string on the http request before
it is passed to Ocelots request creator.

Obviously you can just add middleware as normal before the call to app.UseOcelot() It cannot be added after as Ocelot
does not call the next middleware.

77

Ocelot, Release 16.0

78 Chapter 25. Middleware Injection and Overrides

CHAPTER

TWENTYSIX

LOAD BALANCER

Ocelot can load balance across available downstream services for each Route. This means you can scale your down-
stream services and Ocelot can use them effectively.

The type of load balancer available are:

LeastConnection - tracks which services are dealing with requests and sends new requests to service with
least existing requests. The algorythm state is not distributed across a cluster of Ocelot’s.

RoundRobin - loops through available services and sends requests. The algorythm state is not distributed
across a cluster of Ocelot’s.

NoLoadBalancer - takes the first available service from config or service discovery.

CookieStickySessions - uses a cookie to stick all requests to a specific server. More info below.

You must choose in your configuration which load balancer to use.

26.1 Configuration

The following shows how to set up multiple downstream services for a Route using ocelot.json and then select the
LeastConnection load balancer. This is the simplest way to get load balancing set up.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "10.0.1.10",
"Port": 5000,

},
{

"Host": "10.0.1.11",
"Port": 5000,

}
],

"UpstreamPathTemplate": "/posts/{postId}",
"LoadBalancerOptions": {

"Type": "LeastConnection"
},
"UpstreamHttpMethod": ["Put", "Delete"]

}

79

Ocelot, Release 16.0

26.2 Service Discovery

The following shows how to set up a Route using service discovery then select the LeastConnection load balancer.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put"],
"ServiceName": "product",
"LoadBalancerOptions": {

"Type": "LeastConnection"
},

}

When this is set up Ocelot will lookup the downstream host and port from the service discover provider and load balance
requests across any available services. If you add and remove services from the service discovery provider (consul)
then Ocelot should respect this and stop calling services that have been removed and start calling services that have
been added.

26.3 CookieStickySessions

I’ve implemented a really basic sticky session type of load balancer. The scenario it is meant to support is you have a
bunch of downstream servers that don’t share session state so if you get more than one request for one of these servers
then it should go to the same box each time or the session state might be incorrect for the given user. This feature was
requested in Issue #322 though what the user wants is more complicated than just sticky sessions :) anyway I thought
this would be a nice feature to have!

In order to set up CookieStickySessions load balancer you need to do something like the following.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "10.0.1.10",
"Port": 5000,

},
{

"Host": "10.0.1.11",
"Port": 5000,

}
],

"UpstreamPathTemplate": "/posts/{postId}",
"LoadBalancerOptions": {

"Type": "CookieStickySessions",
"Key": "ASP.NET_SessionId",
"Expiry": 1800000

},
"UpstreamHttpMethod": ["Put", "Delete"]

}

80 Chapter 26. Load Balancer

https://github.com/ThreeMammals/Ocelot/issues/322

Ocelot, Release 16.0

The LoadBalancerOptions are Type this needs to be CookieStickySessions, Key this is the key of the cookie you wish
to use for the sticky sessions, Expiry this is how long in milliseconds you want to the session to be stuck for. Remember
this refreshes on every request which is meant to mimick how sessions work usually.

If you have multiple Routes with the same LoadBalancerOptions then all of those Routes will use the same load balancer
for there subsequent requests. This means the sessions will be stuck across Routes.

Please note that if you give more than one DownstreamHostAndPort or you are using a Service Discovery provider
such as Consul and this returns more than one service then CookieStickySessions uses round robin to select the next
server. This is hard coded at the moment but could be changed.

26.4 Custom Load Balancers

`DavidLievrouw <https://github.com/DavidLievrouw`_ implemented a way to provide Ocelot with custom load bal-
ancer in `PR 1155 <https://github.com/ThreeMammals/Ocelot/pull/1155`_.

In order to create and use a custom load balancer you can do the following. Below we setup a basic load balancing
config and not the Type is CustomLoadBalancer this is the name of a class we will setup to do load balancing.

{
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "10.0.1.10",
"Port": 5000,

},
{

"Host": "10.0.1.11",
"Port": 5000,

}
],

"UpstreamPathTemplate": "/posts/{postId}",
"LoadBalancerOptions": {

"Type": "CustomLoadBalancer"
},
"UpstreamHttpMethod": ["Put", "Delete"]

}

Then you need to create a class that implements the ILoadBalancer interface. Below is a simple round robin example.

private class CustomLoadBalancer : ILoadBalancer
{

private readonly Func<Task<List<Service>>> _services;
private readonly object _lock = new object();

private int _last;

public CustomLoadBalancer(Func<Task<List<Service>>> services)
{

_services = services;
}

(continues on next page)

26.4. Custom Load Balancers 81

Ocelot, Release 16.0

(continued from previous page)

public async Task<Response<ServiceHostAndPort>> Lease(DownstreamContext␣
→˓downstreamContext, HttpContext httpContext)

{
var services = await _services();
lock (_lock)
{

if (_last >= services.Count)
{

_last = 0;
}

var next = services[_last];
_last++;
return new OkResponse<ServiceHostAndPort>(next.HostAndPort);

}
}

public void Release(ServiceHostAndPort hostAndPort)
{
}

}

Finally you need to register this class with Ocelot. I have used the most complex example below to show all of the data
/ types that can be passed into the factory that creates load balancers.

Func<IServiceProvider, DownstreamRoute, IServiceDiscoveryProvider, CustomLoadBalancer>␣
→˓loadBalancerFactoryFunc = (serviceProvider, Route, serviceDiscoveryProvider) => new␣
→˓CustomLoadBalancer(serviceDiscoveryProvider.Get);

s.AddOcelot()
.AddCustomLoadBalancer(loadBalancerFactoryFunc);

However there is a much simpler example that will work the same.

s.AddOcelot()
.AddCustomLoadBalancer<CustomLoadBalancer>();

There are numerous extension methods to add a custom load balancer and the interface is as follows.

IOcelotBuilder AddCustomLoadBalancer<T>()
where T : ILoadBalancer, new();

IOcelotBuilder AddCustomLoadBalancer<T>(Func<T> loadBalancerFactoryFunc)
where T : ILoadBalancer;

IOcelotBuilder AddCustomLoadBalancer<T>(Func<IServiceProvider, T>␣
→˓loadBalancerFactoryFunc)
where T : ILoadBalancer;

IOcelotBuilder AddCustomLoadBalancer<T>(
Func<DownstreamRoute, IServiceDiscoveryProvider, T> loadBalancerFactoryFunc)
where T : ILoadBalancer;

(continues on next page)

82 Chapter 26. Load Balancer

Ocelot, Release 16.0

(continued from previous page)

IOcelotBuilder AddCustomLoadBalancer<T>(
Func<IServiceProvider, DownstreamRoute, IServiceDiscoveryProvider, T>␣

→˓loadBalancerFactoryFunc)
where T : ILoadBalancer;

When you enable custom load balancers Ocelot looks up your load balancer by its class name when it decides if it
should do load balancing. If it finds a match it will use your load balaner to load balance. If Ocelot cannot match the
load balancer type in your configuration with the name of registered load balancer class then you will receive a HTTP
500 internal server error. If your load balancer factory throw an exception when Ocelot calls it you will receive a HTTP
500 internal server error.

Remember if you specify no load balancer in your config Ocelot will not try and load balance.

26.4. Custom Load Balancers 83

Ocelot, Release 16.0

84 Chapter 26. Load Balancer

CHAPTER

TWENTYSEVEN

DELEGATING HANDLERS

Ocelot allows the user to add delegating handlers to the HttpClient transport. This feature was requested GitHub #208
and I decided that it was going to be useful in various ways. Since then we extended it in GitHub #264.

27.1 Usage

In order to add delegating handlers to the HttpClient transport you need to do two main things.

First in order to create a class that can be used a delegating handler it must look as follows. We are going to register
these handlers in the asp.net core container so you can inject any other services you have registered into the constructor
of your handler.

public class FakeHandler : DelegatingHandler
{

protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage␣
→˓request, CancellationToken cancellationToken)

{
//do stuff and optionally call the base handler..
return await base.SendAsync(request, cancellationToken);

}
}

Next you must add the handlers to Ocelot’s container like below. . .

services.AddOcelot()
.AddDelegatingHandler<FakeHandler>()
.AddDelegatingHandler<FakeHandlerTwo>()

Both of these Add methods have a default parameter called global which is set to false. If it is false then the intent of
the DelegatingHandler is to be applied to specific Routes via ocelot.json (more on that later). If it is set to true then it
becomes a global handler and will be applied to all Routes.

e.g.

As below. . .

services.AddOcelot()
.AddDelegatingHandler<FakeHandler>(true)

Finally if you want Route specific DelegatingHandlers or to order your specific and / or global (more on this later)
DelegatingHandlers then you must add the following json to the specific Route in ocelot.json. The names in the array
must match the class names of your DelegatingHandlers for Ocelot to match them together.

85

https://github.com/ThreeMammals/Ocelot/issues/208
https://github.com/ThreeMammals/Ocelot/issues/264

Ocelot, Release 16.0

"DelegatingHandlers": [
"FakeHandlerTwo",
"FakeHandler"

]

You can have as many DelegatingHandlers as you want and they are run in the following order:

1. Any globals that are left in the order they were added to services and are not in the DelegatingHandlers array
from ocelot.json.

2. Any non global DelegatingHandlers plus any globals that were in the DelegatingHandlers array from ocelot.json
ordered as they are in the DelegatingHandlers array.

3. Tracing DelegatingHandler if enabled (see tracing docs).

4. QoS DelegatingHandler if enabled (see QoS docs).

5. The HttpClient sends the HttpRequestMessage.

Hopefully other people will find this feature useful!

86 Chapter 27. Delegating Handlers

CHAPTER

TWENTYEIGHT

HTTP ERROR STATUS CODES

Ocelot will return HTTP status error codes based on internal logic in certain siturations: - 401 if the authentication
middleware runs and the user is not authenticated. - 403 if the authorization middleware runs and the user is unauthen-
ticated, claim value not authroised, scope not authorized, user doesnt have required claim or cannot find claim. - 503
if the downstream request times out. - 499 if the request is cancelled by the client. - 404 if unable to find a downstream
route. - 502 if unable to connect to downstream service. - 500 if unable to complete the HTTP request downstream
and the exception is not OperationCanceledException or HttpRequestException. - 404 if Ocelot is unable to map an
internal error code to a HTTP status code.

87

Ocelot, Release 16.0

88 Chapter 28. Http Error Status Codes

CHAPTER

TWENTYNINE

OVERVIEW

This document summarises the build and release process for the project. The build scripts are written using Cake, and
are defined in ./build.cake. The scripts have been designed to be run by either developers locally or by a build server
(currently CircleCi), with minimal logic defined in the build server itself.

89

http://cakebuild.net/
https://circleci.com//

Ocelot, Release 16.0

90 Chapter 29. Overview

CHAPTER

THIRTY

BUILDING

• The best way to build Ocelot is using the Dockerfile.build file which can be found in the docker folder in Ocelot
root. Use the following command docker build -f ./docker/Dockerfile.build ..

• You’ll can run the ./build.ps1 or ./build.sh script depending on your OS. This will compile, run unit and accep-
tance tests and build the output packages locally. Output will got to the ./artifacts directory.

• There is a Makefile to make it easier to call the various targers in build.cake. The scripts are called with .sh but
can be easily changed to ps1 if you are using Windows.

• Alternatively you can build the project in VS2019 with the latest .NET Core SDK.

91

Ocelot, Release 16.0

92 Chapter 30. Building

CHAPTER

THIRTYONE

TESTS

The tests should all just run and work apart from the integration tests which need the following environmental variables
setting. This is a manual step at the moment.

OCELOT_USERNAME=admin

OCELOT_HASH=kE/mxd1hO9h9Sl2VhGhwJUd9xZEv4NP6qXoN39nIqM4=

OCELOT_SALT=zzWITpnDximUNKYLiUam/w==

On windows you can use..

SETX OCELOT_USERNAME admin

On mac..

export OCELOT_USERNAME=admin

I need to work out a nicer way of doing this in the future.

93

Ocelot, Release 16.0

94 Chapter 31. Tests

CHAPTER

THIRTYTWO

RELEASE PROCESS

• The release process works best with Git Flow branching.

• Contributors can do whatever they want on PRs and merges to master will result in packages being released to
GitHub and NuGet.

Ocelot uses the following process to accept work into the NuGet packages.

1. User creates an issue or picks up an existing issue in GitHub.

2. User creates a fork and branches from this (unless a member of core team, they can just create a branch on the
main repo) e.g. feat/xxx, fix/xxx etc. It doesn’t really matter what the xxx is. It might make sense to use the
issue number and maybe a short description. I don’t care as long as it has (feat, fix, refactor)/xxx :)

3. When the user is happy with their work they can create a pull request against develop in GitHub with their
changes. The user must follow the SemVer support for this is provided by GitVersion. So if you need to make
breaking changes please make sure you use the correct commit message so GitVersion uses the correct semver
tags. Do not manually tag the Ocelot repo this will break things.

4. The Ocelot team will review the PR and if all is good merge it, else they will suggest feedback that the
user will need to act on. In order to speed up getting a PR the user should think about the following.

• Have I covered all my changes with tests at unit and acceptance level?

• Have I updated any documentation that my changes may have affected?

• Does my feature make sense, have I checked all of Ocelot’s other features to make sure it doesn’t
already exist?

In order for a PR to be merged the following must have occured.
• All new code is covered by unit tests.

• All new code has at least 1 acceptance test covering the happy path.

• Tests must have passed.

• Build must not have slowed down dramatically.

• The main Ocelot package must not have taken on any non MS dependencies.

5. After the PR is merged to develop the Ocelot NuGet packages will not be updated until a release is created.

6. When enough work has been completed to justify a new release. Develop will be merged into master the release
process will begin which builds the code, versions it, pushes artifacts to GitHub and NuGet packages to NuGet.

7. The final step is to go back to GitHub and close any issues that are now fixed. You should see something like
this in`GitHub <https://github.com/ThreeMammals/Ocelot/releases/tag/13.0.0>`_ and this in NuGet.

95

https://semver.org/
https://gitversion.readthedocs.io/en/latest/
https://github.com/ThreeMammals/Ocelot/releases/tag/13.0.0
https://www.nuget.org/packages/Ocelot/13.0.0

Ocelot, Release 16.0

32.1 Notes

All NuGet package builds & releases are done with CircleCI here <https://circleci.com/gh/ThreeMammals>_ and all
releases are done from here <https://ci.appveyor.com/project/TomPallister/ocelot-ayj4w>_.

Only TomPallister can merge releases into master at the moment. This is to ensure there is a final quality gate in place.
Tom is mainly looking for security issues on the final merge.

96 Chapter 32. Release process

	Big Picture
	Basic Implementation
	With IdentityServer
	Multiple Instances
	With Consul
	With Service Fabric

	Getting Started
	.NET Core 3.1
	.NET Core 1.0

	Contributing
	Not Supported
	Configuration
	Multiple environments
	Merging configuration files
	Store configuration in consul
	Reload JSON config on change
	Configuration Key

	Follow Redirects / Use CookieContainer
	SSL Errors
	MaxConnectionsPerServer
	React to Configuration Changes
	Polling the HasChanged property
	Registering a callback
	DownstreamHttpVersion

	Routing
	Catch All
	Upstream Host
	Priority
	Dynamic Routing
	Query Strings

	Request Aggregation
	Advanced register your own Aggregators
	Basic expecting JSON from Downstream Services
	Gotcha’s / Further info

	GraphQL
	Service Discovery
	Consul
	ACL Token

	Eureka
	Dynamic Routing

	Service Fabric
	Kubernetes
	Authentication
	JWT Tokens
	Identity Server Bearer Tokens
	Okta
	Allowed Scopes

	Authorization
	Websockets
	SignalR
	Supported
	Not Supported

	Administration
	Providing your own IdentityServer
	Internal IdentityServer
	Administration API

	Rate Limiting
	Caching
	Your own caching

	Quality of Service
	Headers Transformation
	Add to Request
	Add to Response
	Find and Replace
	Pre Downstream Request
	Post Downstream Request
	Placeholders
	Handling 302 Redirects
	X-Forwarded-For
	Future

	HTTP Method Transformation
	Claims Transformation
	Claims to Claims Transformation
	Claims to Headers Tranformation
	Claims to Query String Parameters Transformation
	Claims to Downstream Path Transformation

	Logging
	Warning

	Tracing
	OpenTracing
	Butterfly

	Request Id / Correlation Id
	Middleware Injection and Overrides
	Load Balancer
	Configuration
	Service Discovery
	CookieStickySessions
	Custom Load Balancers

	Delegating Handlers
	Usage

	Http Error Status Codes
	Overview
	Building
	Tests
	Release process
	Notes

