
Ocelot
Release 20.0.0

Tom Pallister, Ocelot Core team at ThreeMammals and Ocelot GitHub community

Feb 16, 2024

INTRODUCTION

1 Big Picture 3
1.1 Basic Implementation . 4
1.2 With IdentityServer . 4
1.3 Multiple Instances . 5
1.4 With Consul . 5
1.5 With Service Fabric . 6

2 Getting Started 7
2.1 .NET 7.0 . 7

3 Contributing 11

4 Not Supported 13
4.1 Chunked Encoding . 13
4.2 Forwarding a Host header . 13
4.3 Swagger . 13

5 Gotchas 15
5.1 IIS . 15

6 Administration 17
6.1 Providing your own IdentityServer . 17
6.2 Internal IdentityServer . 18
6.3 Administration API . 19

7 Authentication 21
7.1 JWT Tokens . 21
7.2 Identity Server Bearer Tokens . 22
7.3 Auth0 by Okta . 23
7.4 Allowed Scopes . 23
7.5 More identity providers . 23

8 Authorization 25
8.1 Authorization Middleware . 25

9 Caching 27
9.1 Your Own Caching . 28

10 Claims Transformation 29
10.1 Claims to Claims Transformation . 29
10.2 Claims to Headers Tranformation . 30

i

10.3 Claims to Query String Parameters Transformation . 30
10.4 Claims to Downstream Path Transformation . 30

11 Configuration 31
11.1 Multiple Environments . 32
11.2 Merging Configuration Files . 33
11.3 Store Configuration in Consul . 34
11.4 Reload JSON Config On Change . 34
11.5 Configuration Key . 34
11.6 Follow Redirects aka HttpHandlerOptions . 35
11.7 SSL Errors . 35
11.8 React to Configuration Changes . 36
11.9 DownstreamHttpVersion . 37

12 Delegating Handlers 39
12.1 How to Use . 39
12.2 Order of Execution . 40

13 Dependency Injection 41
13.1 Overview . 41
13.2 IServiceCollection extensions . 41
13.3 The OcelotBuilder class . 42
13.4 Custom Builder . 44

14 Error Status Codes 47
14.1 Client error responses . 47
14.2 Server error responses . 47
14.3 Design . 47

15 GraphQL 49
15.1 Future . 49

16 Headers Transformation 51
16.1 Add to Request . 51
16.2 Add to Response . 51
16.3 Find and Replace . 52
16.4 Pre Downstream Request . 52
16.5 Post Downstream Request . 52
16.6 Placeholders . 52
16.7 Handling 302 Redirects . 53
16.8 X-Forwarded-For . 53
16.9 Future . 53

17 Kubernetes 55

18 Load Balancer 57
18.1 Configuration . 57
18.2 Service Discovery . 58
18.3 CookieStickySessions Type . 58
18.4 Custom Load Balancers . 59

19 Logging 61
19.1 Warning . 61

20 Method Transformation 63

ii

21 Middleware Injection 65
21.1 ASP.NET Core Middlewares and Ocelot Pipeline Builder . 66
21.2 Future . 66

22 Quality of Service 67

23 Rate Limiting 69
23.1 Ocelot Own Implementation . 69
23.2 Future and ASP.NET Core Implementation . 70

24 Request Aggregation 71
24.1 Advanced Register Your Own Aggregators . 71
24.2 Basic Expecting JSON from Downstream Services . 73
24.3 Gotchas . 74

25 Request ID 75
25.1 Global . 75
25.2 Route . 75
25.3 Gotcha . 75

26 Routing 77
26.1 Placeholders . 78
26.2 Catch All . 78
26.3 Upstream Host . 79
26.4 Priority . 79
26.5 Dynamic Routing . 80
26.6 Query Strings . 80
26.7 Security Options . 81

27 Service Discovery 83
27.1 Consul . 83
27.2 Eureka . 85
27.3 Dynamic Routing . 86
27.4 Custom Providers . 88

28 Service Fabric 91

29 Tracing 93
29.1 OpenTracing . 93
29.2 Butterfly . 94

30 Websockets 95
30.1 Links . 95
30.2 SignalR . 96
30.3 Supported . 96
30.4 Not Supported . 97
30.5 Future . 97

31 Overview 99

32 Building 101

33 Tests 103
33.1 Create SSL Cert for Testing . 103

iii

34 Release Process 105
34.1 Notes . 106
34.2 Quality Gates . 106

iv

Ocelot, Release 20.0.0

Thanks for taking a look at the Ocelot documentation! Please use the left hand navigation to get around. The team
would suggest taking a look at the Introduction chapter first.

All Features are arranged in alphabetical order. The main features are Configuration and Routing.

We do follow development process which is described in Release Process.

INTRODUCTION 1

Ocelot, Release 20.0.0

2 INTRODUCTION

CHAPTER

ONE

BIG PICTURE

Ocelot is aimed at people using .NET running a microservices / service-oriented architecture that need a unified point
of entry into their system. However it will work with anything that speaks HTTP(S) and run on any platform that
ASP.NET Core supports.

In particular we want easy integration with IdentityServer reference and Bearer tokens. We have been unable to find
this in our current workplace without having to write our own Javascript middlewares to handle the IdentityServer
reference tokens. We would rather use the IdentityServer code that already exists to do this.

Ocelot is a bunch of middlewares in a specific order.

Ocelot manipulates the HttpRequest object into a state specified by its configuration until it reaches a request builder
middleware, where it creates a HttpRequestMessage object which is used to make a request to a downstream service.
The middleware that makes the request is the last thing in the Ocelot pipeline. It does not call the next middleware. The
response from the downstream service is retrieved as the requests goes back up the Ocelot pipeline. There is a piece of
middleware that maps the HttpResponseMessage onto the HttpResponse object and that is returned to the client.
That is basically it with a bunch of other features!

The following are configurations that you use when deploying Ocelot.

3

https://github.com/IdentityServer
https://oauth.net/2/bearer-tokens/

Ocelot, Release 20.0.0

1.1 Basic Implementation

1.2 With IdentityServer

4 Chapter 1. Big Picture

Ocelot, Release 20.0.0

1.3 Multiple Instances

1.4 With Consul

1.3. Multiple Instances 5

Ocelot, Release 20.0.0

1.5 With Service Fabric

6 Chapter 1. Big Picture

CHAPTER

TWO

GETTING STARTED

Ocelot is designed to work with ASP.NET and is currently on net7.0 framework.

2.1 .NET 7.0

2.1.1 Install NuGet package

Install Ocelot and it’s dependencies using NuGet. You will need to create a ASP.NET Core 7.0 project and bring the
package into it. Then follow the startup below and Configuration sections to get up and running.

Install-Package Ocelot

All versions can be found in the NuGet Gallery | Ocelot.

2.1.2 Configuration

The following is a very basic ocelot.json. It won’t do anything but should get Ocelot starting.

{
"Routes": [],
"GlobalConfiguration": {

"BaseUrl": "https://api.mybusiness.com"
}

}

If you want some example that actually does something use the following:

{
"Routes": [

{
"DownstreamPathTemplate": "/todos/{id}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [

{
"Host": "jsonplaceholder.typicode.com",
"Port": 443

}
],
"UpstreamPathTemplate": "/todos/{id}",

(continues on next page)

7

https://www.nuget.org/
https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api?view=aspnetcore-7.0&tabs=visual-studio
https://www.nuget.org/packages/Ocelot/

Ocelot, Release 20.0.0

(continued from previous page)

"UpstreamHttpMethod": ["Get"]
}

],
"GlobalConfiguration": {

"BaseUrl": "https://localhost:5000"
}

}

The most important thing to note here is BaseUrl property. Ocelot needs to know the URL it is running under in order to
do Header find & replace and for certain administration configurations. When setting this URL it should be the external
URL that clients will see Ocelot running on e.g. If you are running containers Ocelot might run on the URL http:/
/123.12.1.1:6543 but has something like nginx in front of it responding on https://api.mybusiness.com. In
this case the Ocelot BaseUrl should be https://api.mybusiness.com.

If you are using containers and require Ocelot to respond to clients on http://123.12.1.1:6543 then you can do
this, however if you are deploying multiple Ocelot’s you will probably want to pass this on the command line in some
kind of script. Hopefully whatever scheduler you are using can pass the IP.

2.1.3 Program

Then in your Program.cs you will want to have the following. The main things to note are AddOcelot()1 (adds Ocelot
default services), UseOcelot().Wait() (sets up all the Ocelot middleware).

using System.IO;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Hosting;
using Ocelot.DependencyInjection;
using Ocelot.Middleware;

namespace OcelotBasic
{

public class Program
{

public static void Main(string[] args)
{

new WebHostBuilder()
.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.

→˓EnvironmentName}.json", true, true)
.AddJsonFile("ocelot.json")
.AddEnvironmentVariables();

})
(continues on next page)

1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder
method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

8 Chapter 2. Getting Started

Ocelot, Release 20.0.0

(continued from previous page)

.ConfigureServices(s => {
s.AddOcelot();

})
.ConfigureLogging((hostingContext, logging) =>
{

//add your logging
})
.UseIISIntegration()
.Configure(app =>
{

app.UseOcelot().Wait();
})
.Build()
.Run();

}
}

}

2.1. .NET 7.0 9

Ocelot, Release 20.0.0

10 Chapter 2. Getting Started

CHAPTER

THREE

CONTRIBUTING

Pull requests, issues and commentary welcome!

Ideas, questions could be posted to Ocelot Discussions space.

We do follow development process which is described in Release Process.

11

https://github.com/ThreeMammals/Ocelot/discussions

Ocelot, Release 20.0.0

12 Chapter 3. Contributing

CHAPTER

FOUR

NOT SUPPORTED

Ocelot does not support. . .

4.1 Chunked Encoding

Ocelot will always get the body size and return Content-Length header. Sorry, if this doesn’t work for your use case!

4.2 Forwarding a Host header

The Host header that you send to Ocelot will not be forwarded to the downstream service. Obviously this would break
everything

4.3 Swagger

Contributors have looked multiple times at building swagger.json out of the Ocelot ocelot.json but it doesnt fit into the
vision the team has for Ocelot. If you would like to have Swagger in Ocelot then you must roll your own swagger.json
and do the following in your Startup.cs or Program.cs. The code sample below registers a piece of middleware that
loads your hand rolled swagger.json and returns it on /swagger/v1/swagger.json. It then registers the SwaggerUI
middleware from Swashbuckle.AspNetCore package:

app.Map("/swagger/v1/swagger.json", b =>
{

b.Run(async x => {
var json = File.ReadAllText("swagger.json");
await x.Response.WriteAsync(json);

});
});
app.UseSwaggerUI(c =>
{

c.SwaggerEndpoint("/swagger/v1/swagger.json", "Ocelot");
});

app.UseOcelot().Wait();

The main reasons why we don’t think Swagger makes sense is we already hand roll our definition in ocelot.json. If we
want people developing against Ocelot to be able to see what routes are available then either share the ocelot.json with

13

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Length
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
https://www.nuget.org/packages/Swashbuckle.AspNetCore

Ocelot, Release 20.0.0

them (This should be as easy as granting access to a repo etc) or use the Ocelot Administration API so that they can
query Ocelot for the configuration.

In addition to this, many people will configure Ocelot to proxy all traffic like /products/{everything} to their
product service and you would not be describing what is actually available if you parsed this and turned it into a
Swagger path. Also Ocelot has no concept of the models that the downstream services can return and linking to the
above problem the same endpoint can return multiple models. Ocelot does not know what models might be used in
POST, PUT etc, so it all gets a bit messy, and finally, the Swashbuckle package doesnt reload swagger.json if it changes
during runtime. Ocelot’s configuration can change during runtime so the Swagger and Ocelot information would not
match. Unless we rolled our own Swagger implementation.

If the developer wants something to easily test against the Ocelot API then we suggest using Postman as a simple way
to do this. It might even be possible to write something that maps ocelot.json to the Postman JSON spec. However we
don’t intend to do this.

14 Chapter 4. Not Supported

https://www.postman.com/

CHAPTER

FIVE

GOTCHAS

5.1 IIS

Microsoft Learn: Host ASP.NET Core on Windows with IIS

We do not recommend to deploy Ocelot app to IIS environments, but if you do, keep in mind the gotchas below.

• When using ASP.NET Core 2.2+ and you want to use In-Process hosting, replace UseIISIntegration() with
UseIIS(), otherwise you will get startup errors.

• Make sure you use Out-of-process hosting model instead of In-process one (see Out-of-process hosting with IIS
and ASP.NET Core), otherwise you will get very slow responses (see 1657).

• Ensure all DNS servers of all downstream hosts are online and they function perfectly, otherwise you will get
slow responses (see 1630).

The community constanly reports issues related to IIS. If you have some troubles in IIS environment to host Ocelot
app, first of all, read open/closed issues, and after that, search for IIS in the repository. Probably you will find a ready
solution by Ocelot community members.

Finally, we have special label for all IIS related objects. Feel free to put this label onto issues, PRs, discussions, etc.

15

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/out-of-process-hosting?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/out-of-process-hosting?view=aspnetcore-7.0
https://github.com/ThreeMammals/Ocelot/issues/1657
https://github.com/ThreeMammals/Ocelot/issues/1630
https://github.com/ThreeMammals/Ocelot/issues?q=is%3Aissue+IIS
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20IIS&type=code

Ocelot, Release 20.0.0

16 Chapter 5. Gotchas

CHAPTER

SIX

ADMINISTRATION

Ocelot supports changing configuration during runtime via an authenticated HTTP API. This can be authenticated in
two ways either using Ocelot’s internal IdentityServer (for authenticating requests to the administration API only) or
hooking the administration API authentication into your own IdentityServer.

The first thing you need to do if you want to use the administration API is bring in the relavent NuGet package:

Install-Package Ocelot.Administration

This will bring down everything needed by the administration API.

6.1 Providing your own IdentityServer

All you need to do to hook into your own IdentityServer is add the following configuration options with authentication
to your ConfigureServices method. After that we must pass these options to AddAdministration() extension of
the OcelotBuilder being returned by AddOcelot()1 like below:

public virtual void ConfigureServices(IServiceCollection services)
{

Action<JwtBearerOptions> options = o =>
{

o.Authority = identityServerRootUrl;
o.RequireHttpsMetadata = false;
o.TokenValidationParameters = new TokenValidationParameters
{

ValidateAudience = false,
};
// etc...

};

services
.AddOcelot()
.AddAdministration("/administration", options);

}

You now need to get a token from your IdentityServer and use in subsequent requests to Ocelot’s administration API.
1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder

method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

17

https://www.nuget.org/packages/Ocelot.Administration

Ocelot, Release 20.0.0

This feature was implemented for Issue 228. It is useful because the IdentityServer authentication middleware needs
the URL of the IdentityServer. If you are using the internal IdentityServer, it might not always be possible to have the
Ocelot URL.

6.2 Internal IdentityServer

The API is authenticated using Bearer tokens that you request from Ocelot itself. This is provided by the amazing
Identity Server project that the .NET community has been using for several years. Check them out.

In order to enable the administration section, you need to do a few things. First of all, add this to your initial Startup.cs.

The path can be anything you want and it is obviously recommended don’t use a URL you would like to route through
with Ocelot as this will not work. The administration uses the MapWhen functionality of ASP.NET Core and all requests
to “{root}/administration” will be sent there not to the Ocelot middleware.

The secret is the client secret that Ocelot’s internal IdentityServer will use to authenticate requests to the administra-
tion API. This can be whatever you want it to be! In order to pass this secret string as parameter, we must call the
AddAdministration() extension of the OcelotBuilder being returned by AddOcelot()Page 17, 1 like below:

public virtual void ConfigureServices(IServiceCollection services)
{

services
.AddOcelot()
.AddAdministration("/administration", "secret");

}

In order for the administration API to work, Ocelot / IdentityServer must be able to call itself for validation. This means
that you need to add the base URL of Ocelot to global configuration if it is not default http://localhost:5000.
Please note, if you are using something like Docker to host Ocelot it might not be able to call back to localhost etc, and
you need to know what you are doing with Docker networking in this scenario. Anyway, this can be done as follows.

If you want to run on a different host and port locally:

"GlobalConfiguration": {
"BaseUrl": "http://localhost:55580"

}

or if Ocelot is exposed via DNS:

"GlobalConfiguration": {
"BaseUrl": "http://mydns.com"

}

Now, if you went with the configuration options above and want to access the API, you can use the Postman scripts
called ocelot.postman_collection.json in the solution to change the Ocelot configuration. Obviously these will need
to be changed if you are running Ocelot on a different URL to http://localhost:5000.

The scripts show you how to request a Bearer token from Ocelot and then use it to GET the existing configuration and
POST a configuration.

If you are running multiple Ocelot instances in a cluster then you need to use a certificate to sign the Bearer tokens
used to access the administration API.

In order to do this, you need to add two more environmental variables for each Ocelot in the cluster:

1. OCELOT_CERTIFICATE The path to a certificate that can be used to sign the tokens. The certificate needs to be
of the type X509 and obviously Ocelot needs to be able to access it.

18 Chapter 6. Administration

https://github.com/ThreeMammals/Ocelot/issues/228
https://github.com/IdentityServer/IdentityServer4

Ocelot, Release 20.0.0

2. OCELOT_CERTIFICATE_PASSWORD The password for the certificate.

Normally Ocelot just uses temporary signing credentials but if you set these environmental variables then it will use
the certificate. If all the other Ocelot instances in the cluster have the same certificate then you are good!

6.3 Administration API

6.3.1 POST {adminPath}/connect/token

This gets a token for use with the admin area using the client credentials we talk about setting above. Under the hood
this calls into an IdentityServer hosted within Ocelot.

The body of the request is form-data as follows:

• client_id set as admin

• client_secret set as whatever you used when setting up the administration services.

• scope set as admin

• grant_type set as client_credentials

6.3.2 GET {adminPath}/configuration

This gets the current Ocelot configuration. It is exactly the same JSON we use to set Ocelot up with in the first place.

6.3.3 POST {adminPath}/configuration

This overwrites the existing configuration (should probably be a PUT!). We recommend getting your config from the
GET endpoint, making any changes and posting it back. . . simples.

The body of the request is JSON and it is the same format as the FileConfiguration that we use to set up Ocelot on a
file system.

Please note, if you want to use this API then the process running Ocelot must have permission to write to the disk where
your ocelot.json or ocelot.{environment}.json is located. This is because Ocelot will overwrite them on save.

6.3.4 DELETE {adminPath}/outputcache/{region}

This clears a region of the cache. If you are using a backplane, it will clear all instances of the cache! Giving your the
ability to run a cluster of Ocelots and cache over all of them in memory and clear them all at the same time, so just use
a distributed cache.

The region is whatever you set against the Region field in the FileCacheOptions section of the Ocelot configuration.

6.3. Administration API 19

https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Configuration/File/FileConfiguration.cs
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20FileCacheOptions&type=code

Ocelot, Release 20.0.0

20 Chapter 6. Administration

CHAPTER

SEVEN

AUTHENTICATION

In order to authenticate Routes and subsequently use any of Ocelot’s claims based features such as authorization or
modifying the request with values from the token, users must register authentication services in their Startup.cs as
usual but they provide a scheme (authentication provider key) with each registration e.g.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";
services

.AddAuthentication()

.AddJwtBearer(authenticationProviderKey,
options => { /* custom auth-setup */ });

}

In this example “TestKey” is the scheme that this provider has been registered with. We then map this to a Route in
the configuration e.g.

"Routes": [{
"AuthenticationOptions": {
"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

When Ocelot runs it will look at this Routes AuthenticationOptions.AuthenticationProviderKey and check
that there is an authentication provider registered with the given key. If there isn’t then Ocelot will not start up. If there
is then the Route will use that provider when it executes.

If a Route is authenticated, Ocelot will invoke whatever scheme is associated with it while executing the authentication
middleware. If the request fails authentication, Ocelot returns a HTTP status code 401 Unauthorized.

7.1 JWT Tokens

If you want to authenticate using JWT tokens maybe from a provider like Auth0, you can register your authentication
middleware as normal e.g.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";
services

.AddAuthentication()
(continues on next page)

21

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401
https://auth0.com/

Ocelot, Release 20.0.0

(continued from previous page)

.AddJwtBearer(authenticationProviderKey, options =>
{

options.Authority = "test";
options.Audience = "test";

});
services.AddOcelot();

}

Then map the authentication provider key to a Route in your configuration e.g.

"Routes": [{
"AuthenticationOptions": {
"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

7.2 Identity Server Bearer Tokens

In order to use IdentityServer bearer tokens, register your IdentityServer services as usual in ConfigureServices
with a scheme (key). If you don’t understand how to do this, please consult the IdentityServer documentation.

public void ConfigureServices(IServiceCollection services)
{

var authenticationProviderKey = "TestKey";
Action<JwtBearerOptions> options = (opt) =>
{

opt.Authority = "https://whereyouridentityserverlives.com";
// ...

};
services

.AddAuthentication()

.AddJwtBearer(authenticationProviderKey, options);
services.AddOcelot();

}

Then map the authentication provider key to a Route in your configuration e.g.

"Routes": [{
"AuthenticationOptions": {
"AuthenticationProviderKey": "TestKey",
"AllowedScopes": []

}
}]

22 Chapter 7. Authentication

https://github.com/IdentityServer
https://identityserver4.readthedocs.io/

Ocelot, Release 20.0.0

7.3 Auth0 by Okta

Yet another identity provider by Okta, see Auth0 Developer Resources.

Add the following to your startup Configure method:

app.UseAuthentication()
.UseOcelot().Wait();

Add the following, at minimum, to your startup ConfigureServices method:

services
.AddAuthentication()
.AddJwtBearer(oktaProviderKey, options =>
{

options.Audience = configuration["Authentication:Okta:Audience"]; // Okta␣
→˓Authorization server Audience

options.Authority = configuration["Authentication:Okta:Server"]; // Okta␣
→˓Authorization Issuer URI URL e.g. https://{subdomain}.okta.com/oauth2/{authidentifier}

});
services.AddOcelot(configuration);

Note In order to get Ocelot to view the scope claim from Okta properly, you have to add the following to map the default
Okta "scp" claim to "scope":

// Map Okta "scp" to "scope" claims instead of http://schemas.microsoft.com/identity/
→˓claims/scope to allow Ocelot to read/verify them
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Remove("scp");
JwtSecurityTokenHandler.DefaultInboundClaimTypeMap.Add("scp", "scope");

Issue 446 contains some code and examples that might help with Okta integration.

7.4 Allowed Scopes

If you add scopes to AllowedScopes, Ocelot will get all the user claims (from the token) of the type scope and make
sure that the user has at least one of the scopes in the list.

This is a way to restrict access to a Route on a per scope basis.

7.5 More identity providers

We invite you to add more examples, if you have integrated with other identity providers and the integration solution
is working. Please, open Show and tell discussion in the repository.

7.3. Auth0 by Okta 23

https://www.okta.com/
https://developer.auth0.com/
https://github.com/ThreeMammals/Ocelot/issues/446
https://github.com/ThreeMammals/Ocelot/discussions/categories/show-and-tell

Ocelot, Release 20.0.0

24 Chapter 7. Authentication

CHAPTER

EIGHT

AUTHORIZATION

Ocelot supports claims based authorization which is run post authentication. This means if you have a route you want
to authorize, you can add the following to your Route configuration:

"RouteClaimsRequirement": {
"UserType": "registered"

}

In this example, when the AuthorizationMiddleware is called, Ocelot will check to see if the user has the claim
type UserType and if the value of that claim is "registered". If it isn’t then the user will not be authorized and the
response will be 403 Forbidden.

8.1 Authorization Middleware

The AuthorizationMiddleware is built-in into Ocelot pipeline.

Previous private: ClaimsToClaimsMiddleware
Previous public: PreAuthorizationMiddleware
This: AuthorizationMiddleware
Next private: ClaimsToHeadersMiddleware
Next public: PreQueryStringBuilderMiddleware

So, the closest middlewares are in order of calling:

ClaimsToClaimsMiddleware PreAuthorizationMiddleware AuthorizationMiddleware
ClaimsToHeadersMiddleware PreQueryStringBuilderMiddleware

As you may know from the Middleware Injection section, the Authorization middleware can be overridden like this:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{

var configuration = new OcelotPipelineConfiguration
{

AuthorizationMiddleware = async (context, next) =>
{

await next.Invoke();
}

};
app.UseOcelot(configuration);

}

25

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/403
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20AuthorizationMiddleware&type=code

Ocelot, Release 20.0.0

Do this in very rare cases, because overriding Authorization middleware means you will lose claims & scopes au-
thorizer through the RouteClaimsRequirement property of the route. Another option is preparing before the actual
authorization in PreAuthorizationMiddleware which is public and open to overriding.

26 Chapter 8. Authorization

CHAPTER

NINE

CACHING

Ocelot supports some very rudimentary caching at the moment provider by the CacheManager project. This is an
amazing project that is solving a lot of caching problems. We would recommend using this package to cache with
Ocelot.

The following example shows how to add CacheManager to Ocelot so that you can do output caching.

First of all, add the following NuGet package:

Install-Package Ocelot.Cache.CacheManager

This will give you access to the Ocelot cache manager extension methods.

The second thing you need to do something like the following to your ConfigureServices method:

using Ocelot.Cache.CacheManager;

ConfigureServices(services =>
{

services.AddOcelot()
.AddCacheManager(x => x.WithDictionaryHandle());

});

Finally, in order to use caching on a route in your Route configuration add this setting:

"FileCacheOptions": { "TtlSeconds": 15, "Region": "somename" }

In this example TtlSeconds is set to 15 which means the cache will expire after 15 seconds. The Region represents a
region of caching.

If you look at the example here you can see how the cache manager is setup and then passed into the Ocelot
AddCacheManager configuration method. You can use any settings supported by the CacheManager package and
just pass them in.

Anyway, Ocelot currently supports caching on the URL of the downstream service and setting a TTL in seconds to
expire the cache. You can also clear the cache for a region by calling Ocelot’s administration API.

27

https://github.com/MichaCo/CacheManager
https://www.nuget.org/packages/Ocelot.Cache.CacheManager
https://github.com/ThreeMammals/Ocelot/blob/main/test/Ocelot.ManualTest/Program.cs

Ocelot, Release 20.0.0

9.1 Your Own Caching

If you want to add your own caching method, implement the following interfaces and register them in DI e.g.

services.AddSingleton<IOcelotCache<CachedResponse>, MyCache>();

• IOcelotCache<CachedResponse> this is for output caching.

• IOcelotCache<FileConfiguration> this is for caching the file configuration if you are calling something
remote to get your config such as Consul.

Please dig into the Ocelot source code to find more. We would really appreciate it if anyone wants to implement Redis,
Memcached etc. Please, open a new Show and tell thread in Discussions space of the repository.

28 Chapter 9. Caching

https://redis.io/
http://www.memcached.org/
https://github.com/ThreeMammals/Ocelot/discussions/categories/show-and-tell
https://github.com/ThreeMammals/Ocelot/discussions

CHAPTER

TEN

CLAIMS TRANSFORMATION

Ocelot allows the user to access claims and transform them into headers, query string parameters, other claims and
change downstream paths. This is only available once a user has been authenticated.

After the user is authenticated, we run the claims to claims transformation middleware (see the ClaimsToClaimsMid-
dleware class). This allows the user to transform claims before the authorization middleware is called. After the user is
authorized, we call the claims to headers middleware (see the ClaimsToHeadersMiddleware class), then the claims to
query string parameters middleware (see the ClaimsToQueryStringMiddleware class), and finally the claims to down-
stream path middleware (see the ClaimsToDownstreamPathMiddleware class).

The syntax for performing the transforms is the same for each process. In the Route configuration, a JSON dictionary
is added with a specific name either AddClaimsToRequest, AddHeadersToRequest, AddQueriesToRequest, or
ChangeDownstreamPathTemplate.

Note: This syntax is not ideal. So any suggestions are welcome. . .

Within this dictionary the entries specify how Ocelot should transform things! The key to the dictionary is going to
become the key of either a claim, header or query parameter. In the case of ChangeDownstreamPathTemplate, the
key must be also specified in the DownstreamPathTemplate, in order to do the transformation.

The value of the entry is parsed to logic that will perform the transform. First of all, a dictionary accessor is specified
e.g. Claims[CustomerId]. This means we want to access the claims and get the CustomerId claim type. Next is a
“greater than” > symbol which is just used to split the string. The next entry is either value or value with an indexer.
If value is specified, Ocelot will just take the value and add it to the transform. If the value has an indexer, Ocelot will
look for a delimiter which is provided after another “greater than” > symbol. Ocelot will then split the value on the
delimiter and add whatever was at the index requested to the transform.

10.1 Claims to Claims Transformation

Below is an example configuration that will transform claims to claims

"AddClaimsToRequest": {
"UserType": "Claims[sub] > value[0] > |",
"UserId": "Claims[sub] > value[1] > |"

}

This shows a transforms where Ocelot looks at the users sub claim and transforms it into UserType and UserId claims.
Assuming the sub looks like this usertypevalue|useridvalue.

29

https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20ClaimsToClaimsMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20ClaimsToClaimsMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+ClaimsToHeadersMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+ClaimsToQueryStringMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+ClaimsToDownstreamPathMiddleware&type=code

Ocelot, Release 20.0.0

10.2 Claims to Headers Tranformation

Below is an example configuration that will transform claims to headers

"AddHeadersToRequest": {
"CustomerId": "Claims[sub] > value[1] > |"

}

This shows a transform where Ocelot looks at the users sub claim and transforms it into a CustomerId header. As-
suming the sub looks like this usertypevalue|useridvalue.

10.3 Claims to Query String Parameters Transformation

Below is an example configuration that will transform claims to query string parameters

"AddQueriesToRequest": {
"LocationId": "Claims[LocationId] > value",

}

This shows a transform where Ocelot looks at the users LocationId claim and add it as a query string parameter to
be forwarded onto the downstream service.

10.4 Claims to Downstream Path Transformation

Below is an example configuration that will transform claims to downstream path custom placeholders:

"UpstreamPathTemplate": "/api/users/me/{everything}",
"DownstreamPathTemplate": "/api/users/{userId}/{everything}",
"ChangeDownstreamPathTemplate": {

"userId": "Claims[sub] > value[1] > |",
}

This shows a transform where Ocelot looks at the users userId claim and substitutes the value to the “{userId}”
placeholder specified in the DownstreamPathTemplate. Take into account that the key specified in the Change-
DownstreamPathTemplate must be the same than the placeholder specified in the DownstreamPathTemplate.

Note: If a key specified in the ChangeDownstreamPathTemplate does not exist as a placeholder in Downstream-
PathTemplate, it will fail at runtime returning an error in the response.

30 Chapter 10. Claims Transformation

CHAPTER

ELEVEN

CONFIGURATION

An example configuration can be found here in ocelot.json. There are two sections to the configuration: an array of
Routes and a GlobalConfiguration:

• The Routes are the objects that tell Ocelot how to treat an upstream request.

• The GlobalConfiguration is a bit hacky and allows overrides of Route specific settings. It’s useful if you do not
want to manage lots of Route specific settings.

{
"Routes": [],
"GlobalConfiguration": {}

}

Here is an example Route configuration. You don’t need to set all of these things but this is everything that is available
at the moment:

{
"DownstreamPathTemplate": "/",
"UpstreamPathTemplate": "/",
"UpstreamHttpMethod": ["Get"],
"DownstreamHttpMethod": "",
"DownstreamHttpVersion": "",
"AddHeadersToRequest": {},
"AddClaimsToRequest": {},
"RouteClaimsRequirement": {},
"AddQueriesToRequest": {},
"RequestIdKey": "",
"FileCacheOptions": {
"TtlSeconds": 0,
"Region": "europe-central"

},
"RouteIsCaseSensitive": false,
"ServiceName": "",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 51876 }

],
"QoSOptions": {
"ExceptionsAllowedBeforeBreaking": 0,
"DurationOfBreak": 0,
"TimeoutValue": 0

},
(continues on next page)

31

https://github.com/ThreeMammals/Ocelot/blob/main/test/Ocelot.ManualTest/ocelot.json

Ocelot, Release 20.0.0

(continued from previous page)

"LoadBalancer": "",
"RateLimitOptions": {
"ClientWhitelist": [],
"EnableRateLimiting": false,
"Period": "",
"PeriodTimespan": 0,
"Limit": 0

},
"AuthenticationOptions": {
"AuthenticationProviderKey": "",
"AllowedScopes": []

},
"HttpHandlerOptions": {
"AllowAutoRedirect": true,
"UseCookieContainer": true,
"UseTracing": true,
"MaxConnectionsPerServer": 100

},
"DangerousAcceptAnyServerCertificateValidator": false,
"SecurityOptions": {
"IPAllowedList": [],
"IPBlockedList": [],
"ExcludeAllowedFromBlocked": false

}
}

More information on how to use these options is below.

11.1 Multiple Environments

Like any other ASP.NET Core project Ocelot supports configuration file names such as configuration.dev.json, con-
figuration.test.json etc. In order to implement this add the following to you:

ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.EnvironmentName}.

→˓json", true, true)
.AddJsonFile("ocelot.json")
.AddJsonFile($"configuration.{hostingContext.HostingEnvironment.EnvironmentName}.

→˓json")
.AddEnvironmentVariables();

})

Ocelot will now use the environment specific configuration and fall back to ocelot.json if there isn’t one.

You also need to set the corresponding environment variable which is ASPNETCORE_ENVIRONMENT. More info on this
can be found in the ASP.NET Core docs: Use multiple environments in ASP.NET Core.

32 Chapter 11. Configuration

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments?view=aspnetcore-7.0

Ocelot, Release 20.0.0

11.2 Merging Configuration Files

This feature was requested in issue 296 and allows users to have multiple configuration files to make managing large
configurations easier.

Instead of adding the configuration directly e.g. AddJsonFile("ocelot.json") you can call AddOcelot() like
below:

ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.EnvironmentName}.

→˓json", true, true)
.AddOcelot(hostingContext.HostingEnvironment)
.AddEnvironmentVariables();

})

In this scenario Ocelot will look for any files that match the pattern (?i)ocelot.([a-zA-Z0-9]*).json and
then merge these together. If you want to set the GlobalConfiguration property, you must have a file called
ocelot.global.json.

The way Ocelot merges the files is basically load them, loop over them, add any Routes, add any AggregateRoutes
and if the file is called ocelot.global.json add the GlobalConfiguration aswell as any Routes or AggregateRoutes.
Ocelot will then save the merged configuration to a file called ocelot.json and this will be used as the source of truth
while Ocelot is running.

At the moment there is no validation at this stage it only happens when Ocelot validates the final merged configuration.
This is something to be aware of when you are investigating problems. We would advise always checking what is in
ocelot.json file if you have any problems.

You can also give Ocelot a specific path to look in for the configuration files like below:

ConfigureAppConfiguration((hostingContext, config) =>
{

config
.SetBasePath(hostingContext.HostingEnvironment.ContentRootPath)
.AddJsonFile("appsettings.json", true, true)
.AddJsonFile($"appsettings.{hostingContext.HostingEnvironment.EnvironmentName}.

→˓json", true, true)
.AddOcelot("/foo/bar", hostingContext.HostingEnvironment)
.AddEnvironmentVariables();

})

Ocelot needs the HostingEnvironment so it knows to exclude anything environment specific from the algorithm.

11.2. Merging Configuration Files 33

https://github.com/ThreeMammals/Ocelot/issues/296

Ocelot, Release 20.0.0

11.3 Store Configuration in Consul

The first thing you need to do is install the NuGet package that provides Consul support in Ocelot.

Install-Package Ocelot.Provider.Consul

Then you add the following when you register your services Ocelot will attempt to store and retrieve its con-
figuration in Consul KV store. In order to register Consul services we must call the AddConsul() and
AddConfigStoredInConsul() extensions using the OcelotBuilder being returned by AddOcelot()1 like below:

services
.AddOcelot()
.AddConsul()
.AddConfigStoredInConsul();

You also need to add the following to your ocelot.json. This is how Ocelot finds your Consul agent and interacts to
load and store the configuration from Consul.

"GlobalConfiguration": {
"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 9500

}
}

The team decided to create this feature after working on the Raft consensus algorithm and finding out its super hard.
Why not take advantage of the fact Consul already gives you this! We guess it means if you want to use Ocelot to its
fullest, you take on Consul as a dependency for now.

This feature has a 3 seconds TTL cache before making a new request to your local Consul agent.

11.4 Reload JSON Config On Change

Ocelot supports reloading the JSON configuration file on change. For instance, the following will recreate Ocelot
internal configuration when the ocelot.json file is updated manually:

config.AddJsonFile("ocelot.json", optional: false, reloadOnChange: true);

11.5 Configuration Key

If you are using Consul for configuration (or other providers in the future), you might want to key your configurations:
so you can have multiple configurations. This feature was requested in issue 346. In order to specify the key you need
to set the ConfigurationKey property in the ServiceDiscoveryProvider options of the configuration JSON file e.g.

"GlobalConfiguration": {
"ServiceDiscoveryProvider": {
"Host": "localhost",

(continues on next page)

1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder
method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

34 Chapter 11. Configuration

https://www.nuget.org/packages/Ocelot.Provider.Consul
https://www.consul.io/
https://github.com/ThreeMammals/Ocelot/blob/develop/src/Ocelot.Provider.Consul/ConsulFileConfigurationRepository.cs#L72
https://github.com/ThreeMammals/Ocelot/issues/346

Ocelot, Release 20.0.0

(continued from previous page)

"Port": 9500,
"ConfigurationKey": "Ocelot_A"

}
}

In this example Ocelot will use Ocelot_A as the key for your configuration when looking it up in Consul. If you do
not set the ConfigurationKey, Ocelot will use the string InternalConfiguration as the key.

11.6 Follow Redirects aka HttpHandlerOptions

Class: FileHttpHandlerOptions

Use HttpHandlerOptions in a Route configuration to set up HttpHandler behavior:

"HttpHandlerOptions": {
"AllowAutoRedirect": false,
"UseCookieContainer": false,
"UseTracing": true,
"MaxConnectionsPerServer": 100

},

• AllowAutoRedirect is a value that indicates whether the request should follow redirection responses. Set it
true if the request should automatically follow redirection responses from the downstream resource; otherwise
false. The default value is false.

• UseCookieContainer is a value that indicates whether the handler uses the CookieContainer property to store
server cookies and uses these cookies when sending requests. The default value is false. Please note, if you
use the CookieContainer, Ocelot caches the HttpClient for each downstream service. This means that all
requests to that downstream service will share the same cookies. Issue 274 was created because a user noticed
that the cookies were being shared. The Ocelot team tried to think of a nice way to handle this but we think
it is impossible. If you don’t cache the clients, that means each request gets a new client and therefore a new
cookie container. If you clear the cookies from the cached client container, you get race conditions due to inflight
requests. This would also mean that subsequent requests don’t use the cookies from the previous response! All
in all not a great situation. We would avoid setting UseCookieContainer to true unless you have a really really
good reason. Just look at your response headers and forward the cookies back with your next request!

• MaxConnectionsPerServer This controls how many connections the internal HttpClient will open. This can
be set at Route or global level.

11.7 SSL Errors

If you want to ignore SSL warnings (errors), set the following in your Route config:

"DangerousAcceptAnyServerCertificateValidator": true

We don’t recommend doing this! The team suggests creating your own certificate and then getting it trusted by your
local (remote) machine, if you can. For https scheme this fake validator was requested by issue 309. For wss scheme
this fake validator was added by PR 1377.

As a team, we do not consider it as an ideal solution. From one side, the community wants to have an option to work with
self-signed certificates. But from other side, currently source code scanners detect 2 serious security vulnerabilities

11.6. Follow Redirects aka HttpHandlerOptions 35

https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20FileHttpHandlerOptions&type=code
https://github.com/ThreeMammals/Ocelot/issues/274
https://github.com/ThreeMammals/Ocelot/issues/309
https://github.com/ThreeMammals/Ocelot/pull/1377

Ocelot, Release 20.0.0

because of this fake validator in 20.0 release. The Ocelot team will rethink this unfortunate situation, and it is highly
likely that this feature will at least be redesigned or removed completely.

For now, the SSL fake validator makes sense in local development environments when a route has https or wss
schemes having self-signed certificate for those routes. There are no other reasons to use the DangerousAcceptAny-
ServerCertificateValidator property at all!

As a team, we highly recommend following these instructions when developing your gateway app with Ocelot:

• Local development environments. Use the feature to avoid SSL errors for self-signed certificates in case of
https or wss schemes. We understand that some routes should have dowstream scheme exactly with SSL, be-
cause they are also in development, and/or deployed using SSL protocols. But we believe that especially for local
development, you can switch from https to http without any objection since the services are in development
and there is no risk of data leakage.

• Remote development environments. Everything is the same as for local development. But this case is less strict,
you have more options to use real certificates to switch off the feature. For instance, you can deploy downstream
services to cloud & hosting providers which have own signed certificates for SSL. At least your team can deploy
one remote web server to host downstream services. Install own certificate or use cloud provider’s one.

• Staging or testing environments. We do not recommend to use self-signed certificates because web servers
should have valid certificates installed. Ask your system administrator or DevOps engineers of your team to
create valid certificates.

• Production environments. Do not use self-signed certificates at all! System administrators or DevOps engi-
neers must create real valid certificates being signed by hosting or cloud providers. Switch off the feature for
all routes! Remove the DangerousAcceptAnyServerCertificateValidator property for all routes in production
version of ocelot.json file!

11.8 React to Configuration Changes

Resolve IOcelotConfigurationChangeTokenSource interface from the DI container if you wish to react to changes
to the Ocelot configuration via the Administration API or ocelot.json being reloaded from the disk. You may either poll
the change token’s IChangeToken.HasChanged property, or register a callback with the RegisterChangeCallback
method.

11.8.1 Polling the HasChanged property

public class ConfigurationNotifyingService : BackgroundService
{

private readonly IOcelotConfigurationChangeTokenSource _tokenSource;
private readonly ILogger _logger;

public ConfigurationNotifyingService(IOcelotConfigurationChangeTokenSource␣
→˓tokenSource, ILogger logger)

{
_tokenSource = tokenSource;
_logger = logger;

}

protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{

while (!stoppingToken.IsCancellationRequested)
(continues on next page)

36 Chapter 11. Configuration

https://github.com/ThreeMammals/Ocelot/releases/tag/20.0.0

Ocelot, Release 20.0.0

(continued from previous page)

{
if (_tokenSource.ChangeToken.HasChanged)
{

_logger.LogInformation("Configuration updated");
}
await Task.Delay(1000, stoppingToken);

}
}

}

11.8.2 Registering a callback

public class MyDependencyInjectedClass : IDisposable
{

private readonly IOcelotConfigurationChangeTokenSource _tokenSource;
private readonly IDisposable _callbackHolder;

public MyClass(IOcelotConfigurationChangeTokenSource tokenSource)
{

_tokenSource = tokenSource;
callbackHolder = tokenSource.ChangeToken.RegisterChangeCallback(=> Console.

→˓WriteLine("Configuration changed"), null);
}
public void Dispose()
{

_callbackHolder.Dispose();
}

}

11.9 DownstreamHttpVersion

Ocelot allows you to choose the HTTP version it will use to make the proxy request. It can be set as 1.0, 1.1 or 2.0.

11.9. DownstreamHttpVersion 37

Ocelot, Release 20.0.0

38 Chapter 11. Configuration

CHAPTER

TWELVE

DELEGATING HANDLERS

Ocelot allows the user to add delegating handlers to the HttpClient transport. This feature was requested by issue
208 and the team decided that it was going to be useful in various ways. Since then we extended it in issue 264.

12.1 How to Use

In order to add delegating handlers to the HttpClient transport you need to do two main things.

First, in order to create a class that can be used a delegating handler it must look as follows. We are going to register
these handlers in the ASP.NET Core DI container, so you can inject any other services you have registered into the
constructor of your handler.

public class FakeHandler : DelegatingHandler
{

protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage␣
→˓request, CancellationToken token)

{
// Do stuff and optionally call the base handler...
return await base.SendAsync(request, token);

}
}

Second, you must add the handlers to DI container like below:

ConfigureServices(s => s
.AddOcelot()
.AddDelegatingHandler<FakeHandler>()
.AddDelegatingHandler<FakeHandlerTwo>()

)

Both of these AddDelegatingHandler methods have a default parameter called global which is set to false. If it is
false then the intent of the Delegating Handler is to be applied to specific Routes via ocelot.json (more on that later).
If it is set to true then it becomes a global handler and will be applied to all Routes, as below:

services.AddOcelot()
.AddDelegatingHandler<FakeHandler>(true)

Finally, if you want Route specific Delegating Handlers or to order your specific and (or) global (more on this later)
Delegating Handlers then you must add the following to the specific Route in ocelot.json. The names in the array must
match the class names of your Delegating Handlers for Ocelot to match them together:

39

https://github.com/ThreeMammals/Ocelot/issues/208
https://github.com/ThreeMammals/Ocelot/issues/208
https://github.com/ThreeMammals/Ocelot/issues/264

Ocelot, Release 20.0.0

"DelegatingHandlers": [
"FakeHandlerTwo",
"FakeHandler"

]

12.2 Order of Execution

You can have as many Delegating Handlers as you want and they are run in the following order:

1. Any globals that are left in the order they were added to services and are not in the DelegatingHandlers array
from ocelot.json.

2. Any non global Delegating Handlers plus any globals that were in the DelegatingHandlers array from
ocelot.json ordered as they are in the DelegatingHandlers array.

3. Tracing Delegating Handler, if enabled (see Tracing docs).

4. Quality of Service Delegating Handler, if enabled (see Quality of Service docs).

5. The HttpClient sends the HttpRequestMessage.

Hopefully other people will find this feature useful!

40 Chapter 12. Delegating Handlers

CHAPTER

THIRTEEN

DEPENDENCY INJECTION

Namespace: Ocelot.DependencyInjection
Source code: DependencyInjection

13.1 Overview

Dependency Injection feature in Ocelot is designed to extend and/or control building of Ocelot core as
ASP.NET MVC pipeline services. The main methods are AddOcelot and AddOcelotUsingBuilder of the
ServiceCollectionExtensions class. Use them in Program.cs and Startup.cs of your ASP.NET MVC gateway
app (minimal web app) to enable and build Ocelot pipeline.

And of course, the OcelotBuilder class is the core of Ocelot.

13.2 IServiceCollection extensions

Class: Ocelot.DependencyInjection.ServiceCollectionExtensions

Based on the current implementations for the OcelotBuilder class, the AddOcelot method adds default ASP.NET
services to DI container. You could call another more extended AddOcelotUsingBuilder method while configuring
services to build and use custom builder via an IMvcCoreBuilder interface object.

13.2.1 The AddOcelot method

Signatures:

• IOcelotBuilder AddOcelot(this IServiceCollection services)

• IOcelotBuilder AddOcelot(this IServiceCollection services, IConfiguration
configuration)

This IServiceCollection extension method adds default ASP.NET services and Ocelot application services with
configuration injected implicitly or explicitly. Note! The method adds default ASP.NET services required for Ocelot
core in the AddDefaultAspNetServices method which plays the role of default builder.

In this scenario, you do nothing except calling the AddOcelot method which has been mentioned in feature chapters, if
additional startup settings are required. In this case you just reuse default settings to build Ocelot core. The alternative
is AddOcelotUsingBuilder method, see the next section.

41

https://github.com/search?q=repo%3AThreeMammals%2FOcelot+namespace+Ocelot.DependencyInjection&type=code
https://github.com/ThreeMammals/Ocelot/tree/develop/src/Ocelot/DependencyInjection
https://github.com/ThreeMammals/Ocelot/blob/develop/src/Ocelot/DependencyInjection/ServiceCollectionExtensions.cs

Ocelot, Release 20.0.0

13.2.2 The AddOcelotUsingBuilder method

Signatures:

• IOcelotBuilder AddOcelotUsingBuilder(this IServiceCollection services,
Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder> customBuilder)

• IOcelotBuilder AddOcelotUsingBuilder(this IServiceCollection services,
IConfiguration configuration, Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder>
customBuilder)

This IServiceCollection extension method adds Ocelot application services, and it adds custom ASP.NET services
with configuration injected implicitly or explicitly. Note! The method adds custom ASP.NET services required for
Ocelot pipeline using custom builder (customBuilder parameter). It is highly recommended to read docs of the
AddDefaultAspNetServices method, or even to review implementation to understand default ASP.NET services which
are the minimal part of the gateway pipeline.

In this custom scenario, you control everything during ASP.NET MVC pipeline building, and you provide custom
settings to build Ocelot core.

13.3 The OcelotBuilder class

Source code: Ocelot.DependencyInjection.OcelotBuilder

The OcelotBuilder class is the core of Ocelot which does the following:

• Contructs itself by single public constructor: public OcelotBuilder(IServiceCollection services,
IConfiguration configurationRoot, Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder>
customBuilder = null)

• Initializes and stores public properties: Services (IServiceCollection object), Configuration
(IConfiguration object) and MvcCoreBuilder (IMvcCoreBuilder object)

• Adds all application services during construction phase over the Services property

• Adds ASP.NET services by builder using Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder> object
in these 2 development scenarios:

– by default builder (AddDefaultAspNetServices method) if there is no customBuilder parameter pro-
vided

– by custom builder with provided delegate object as the customBuilder parameter

• Adds (switches on/off) Ocelot features by:

– AddSingletonDefinedAggregator and AddTransientDefinedAggregator methods

– AddCustomLoadBalancer method

– AddDelegatingHandler method

– AddConfigPlaceholders method

42 Chapter 13. Dependency Injection

https://github.com/ThreeMammals/Ocelot/blob/develop/src/Ocelot/DependencyInjection/OcelotBuilder.cs

Ocelot, Release 20.0.0

13.3.1 The AddDefaultAspNetServices method

Class: Ocelot.DependencyInjection.OcelotBuilder

Currently the method is protected and overriding is forbidden. The role of the method is to inject required services via
both IServiceCollection and IMvcCoreBuilder interfaces objects for the minimal part of the gateway pipeline.

Current implementation is the folowing:

protected IMvcCoreBuilder AddDefaultAspNetServices(IMvcCoreBuilder builder, Assembly␣
→˓assembly)
{

Services
.AddLogging()
.AddMiddlewareAnalysis()
.AddWebEncoders();

return builder
.AddApplicationPart(assembly)
.AddControllersAsServices()
.AddAuthorization()
.AddNewtonsoftJson();

}

The method cannot be overridden. It is not virtual, and there is no way to override current behavior by inheri-
tance. And, the method is default builder of Ocelot pipeline while calling the AddOcelot method. As alternative, to
“override” this default builder, you can design and reuse custom builder as a Func<IMvcCoreBuilder, Assembly,
IMvcCoreBuilder> delegate object and pass it as parameter to the AddOcelotUsingBuilder extension method. It gives
you full control on design and buiding of Ocelot pipeline, but be careful while designing your custom Ocelot pipeline
as customizable ASP.NET MVC pipeline.

Warning! Most of services from minimal part of the pipeline should be reused, but only a few of services could be
removed.

Warning!! The method above is called after adding required services of ASP.NET MVC pipeline building by AddMvc-
Core method over the Services property in upper calling context. These services are absolute minimum core services
for ASP.NET MVC pipeline. They must be added to DI container always, and they are added implicitly before calling
of the method by caller in upper context. So, AddMvcCore creates an IMvcCoreBuilder object with its assignment
to the MvcCoreBuilder property. Finally, as a default builder, the method above receives IMvcCoreBuilder object
being ready for further extensions.

The next section shows you an example of designing custom Ocelot pipeline by custom builder.

13.3. The OcelotBuilder class 43

https://github.com/ThreeMammals/Ocelot/blob/develop/src/Ocelot/DependencyInjection/OcelotBuilder.cs
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoreservicecollectionextensions.addmvccore?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoreservicecollectionextensions.addmvccore?view=aspnetcore-7.0

Ocelot, Release 20.0.0

13.4 Custom Builder

Goal: Replace Newtonsoft.Json services with System.Text.Json services.

13.4.1 The Problem

The default AddOcelot method adds Newtonsoft JSON services by the AddNewtonsoftJson extension method in
default builder (the AddDefaultAspNetServices method). The AddNewtonsoftJson method calling was introduced in
old .NET and Ocelot releases which was necessary when Microsoft did not launch the System.Text.Json library,
but now it affects normal use, so we have an intention to solve the problem.

Modern JSON services out of the box will help to configure JSON settings by the JsonSerializerOptions property
for JSON formatters during (de)serialization.

13.4.2 Solution

We have the following methods in Ocelot.DependencyInjection.ServiceCollectionExtensions class:

• IOcelotBuilder AddOcelotUsingBuilder(this IServiceCollection services,
Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder> customBuilder)

• IOcelotBuilder AddOcelotUsingBuilder(this IServiceCollection services,
IConfiguration configuration, Func<IMvcCoreBuilder, Assembly, IMvcCoreBuilder>
customBuilder)

These method with custom builder allows you to use your any desired JSON library for (de)serialization. But we are
going to create custom MvcCoreBuilder with support of JSON services, such as System.Text.Json. To do that
we need to call AddJsonOptions extension of the MvcCoreMvcCoreBuilderExtensions class (NuGet package:
Microsoft.AspNetCore.Mvc.Core) in Startup.cs:

using Microsoft.Extensions.DependencyInjection;
using Ocelot.DependencyInjection;
using System.Reflection;

public class Startup
{

public void ConfigureServices(IServiceCollection services)
{

services
.AddLogging()
.AddMiddlewareAnalysis()
.AddWebEncoders()
// Add your custom builder
.AddOcelotUsingBuilder(MyCustomBuilder);

}

private static IMvcCoreBuilder MyCustomBuilder(IMvcCoreBuilder builder, Assembly␣
→˓assembly)

{
return builder

.AddApplicationPart(assembly)

.AddControllersAsServices()

.AddAuthorization()
(continues on next page)

44 Chapter 13. Dependency Injection

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.newtonsoftjsonmvccorebuilderextensions.addnewtonsoftjson?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvccorebuilderextensions.addjsonoptions?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.mvccoremvccorebuilderextensions?view=aspnetcore-7.0
https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc.Core/

Ocelot, Release 20.0.0

(continued from previous page)

// Replace AddNewtonsoftJson() by AddJsonOptions()
.AddJsonOptions(options =>
{

options.JsonSerializerOptions.WriteIndented = true; // use System.Text.
→˓Json

});
}

}

The sample code provides settings to render JSON as indented text rather than compressed plain JSON text without
spaces. This is just one common use case, and you can add additional services to the builder.

13.4. Custom Builder 45

Ocelot, Release 20.0.0

46 Chapter 13. Dependency Injection

CHAPTER

FOURTEEN

ERROR STATUS CODES

Ocelot will return HTTP status error codes based on internal logic in certain situations:

14.1 Client error responses

• 401 - if the authentication middleware runs and the user is not authenticated.

• 403 - if the authorization middleware runs and the user is unauthenticated, claim value not authorized, scope not
authorized, user doesn’t have required claim, or cannot find claim.

• 404 - if unable to find a downstream route, or Ocelot is unable to map an internal error code to a HTTP status
code.

• 499 - if the request is cancelled by the client.

14.2 Server error responses

• 500 - if unable to complete the HTTP request to downstream service, and the exception is not
OperationCanceledException or HttpRequestException.

• 502 - if unable to connect to downstream service.

• 503 - if the downstream request times out.

14.3 Design

Historically Ocelot errors are implemented by the HttpExceptionToErrorMapper class. The Map method converts a
System.Exception object to native Ocelot.Errors.Error object.

We do HTTP status code overriding because of Exception-to-Error mapping. This can be confusing for the developer
since the actual status code of the downstream service may be different and get lost. Please, research and review all re-
sponse headers of upstream service. If you did not find statuses and (or) required headers then Headers Transformation
feature should help.

We expect you to share your user case with us in the Discussions space of the repository.

47

https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20HttpExceptionToErrorMapper&type=code
https://github.com/ThreeMammals/Ocelot/discussions

Ocelot, Release 20.0.0

48 Chapter 14. Error Status Codes

CHAPTER

FIFTEEN

GRAPHQL

Ocelot doesn’t directly support GraphQL, but so many people have asked about it. We wanted to show how easy it is
to integrate the GraphQL for .NET library.

Please see the sample project OcelotGraphQL. Using a combination of the graphql-dotnet project and Ocelot Delegat-
ing Handlers features, this is pretty easy to do. However we do not intend to integrate more closely with GraphQL at
the moment. Check out the samples README.md and that should give you enough instruction on how to do this!

15.1 Future

If you have sufficient experience with GraphQL and mentioned .NET package, we would welcome your contribution

to the sample.

Who knows, maybe you’ll get inspired by the sample development and come up with some design solution in the form
of a rough draft of GraphQL feature to implement in Ocelot. Good luck!

And, welcome to Discussions space of the repository!

49

https://graphql.org/
https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/ThreeMammals/Ocelot/tree/main/samples/OcelotGraphQL
https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/ThreeMammals/Ocelot/blob/main/samples/OcelotGraphQL/README.md
https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/ThreeMammals/Ocelot/discussions

Ocelot, Release 20.0.0

50 Chapter 15. GraphQL

CHAPTER

SIXTEEN

HEADERS TRANSFORMATION

Ocelot allows the user to transform headers pre and post downstream request. At the moment Ocelot only supports
find and replace. This feature was requested in issue 190 and the team decided that it was going to be useful in various
ways.

16.1 Add to Request

This feature was requested in issue 313.

If you want to add a header to your upstream request please add the following to a Route in your ocelot.json:

"UpstreamHeaderTransform": {
"Uncle": "Bob"

}

In the example above a header with the key Uncle and value Bob would be send to to the upstream service.

Placeholders are supported too (see below).

16.2 Add to Response

This feature was requested in issue 280.

If you want to add a header to your downstream response, please add the following to a Route in ocelot.json:

"DownstreamHeaderTransform": {
"Uncle": "Bob"

}

In the example above a header with the key Uncle and value Bob would be returned by Ocelot when requesting the
specific Route.

If you want to return the Butterfly APM trace id then do something like the following:

"DownstreamHeaderTransform": {
"AnyKey": "{TraceId}"

}

51

https://github.com/ThreeMammals/Ocelot/issues/190
https://github.com/ThreeMammals/Ocelot/issues/313
https://github.com/ThreeMammals/Ocelot/issues/280
https://github.com/liuhaoyang/butterfly-csharp

Ocelot, Release 20.0.0

16.3 Find and Replace

In order to transform a header first we specify the header key and then the type of transform we want e.g.

"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

The key is Test and the value is http://www.bbc.co.uk/, http://ocelot.com/. The value is saying: replace
http://www.bbc.co.uk/ with http://ocelot.com/. The syntax is {find}, {replace}. Hopefully pretty sim-
ple. There are examples below that explain more.

16.4 Pre Downstream Request

Add the following to a Route in ocelot.json in order to replace http://www.bbc.co.uk/ with http://ocelot.
com/. This header will be changed before the request downstream and will be sent to the downstream server.

"UpstreamHeaderTransform": {
"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

}

16.5 Post Downstream Request

Add the following to a Route in ocelot.json in order to replace http://www.bbc.co.uk/ with http://ocelot.
com/. This transformation will take place after Ocelot has received the response from the downstream service.

"DownstreamHeaderTransform": {
"Test": "http://www.bbc.co.uk/, http://ocelot.com/"

}

16.6 Placeholders

Ocelot allows placeholders that can be used in header transformation.

• {BaseUrl} - This will use Ocelot base URL e.g. http://localhost:5000 as its value.

• {DownstreamBaseUrl} - This will use the downstream services base URL e.g. http://localhost:5000 as
its value. This only works for DownstreamHeaderTransform at the moment.

• {RemoteIpAddress} - This will find the clients IP address using IHttpContextAccessor.HttpContext.
Connection.RemoteIpAddress.ToString(), so you will get back some IP. See more in the GetRemoteIpAd-
dress method.

• {TraceId} - This will use the Butterfly APM Trace Id. This only works for DownstreamHeaderTransform at
the moment.

• {UpstreamHost} - This will look for the incoming Host header.

For now, we believe these placeholders are sufficient for basic user scenarios. But if you need more placeholders, you
can head to the future.

52 Chapter 16. Headers Transformation

https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Infrastructure/Placeholders.cs#L82
https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Infrastructure/Placeholders.cs#L82
https://github.com/liuhaoyang/butterfly-csharp

Ocelot, Release 20.0.0

16.7 Handling 302 Redirects

Ocelot will by default automatically follow redirects, however if you want to return the location header to the client,
you might want to change the location to be Ocelot not the downstream service. Ocelot allows this with the following
configuration:

"DownstreamHeaderTransform": {
"Location": "http://www.bbc.co.uk/, http://ocelot.com/"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

}

Or, you could use the BaseUrl placeholder.

"DownstreamHeaderTransform": {
"Location": "http://localhost:6773, {BaseUrl}"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

}

Finally, if you are using a load balancer with Ocelot, you will get multiple downstream base URLs so the above would
not work. In this case you can do the following:

"DownstreamHeaderTransform": {
"Location": "{DownstreamBaseUrl}, {BaseUrl}"

},
"HttpHandlerOptions": {
"AllowAutoRedirect": false,

}

16.8 X-Forwarded-For

An example of using {RemoteIpAddress} placeholder:

"UpstreamHeaderTransform": {
"X-Forwarded-For": "{RemoteIpAddress}"

}

16.9 Future

Ideally this feature would be able to support the fact that a header can have multiple values. At the moment it just
assumes one. It would also be nice if it could multi find and replace e.g.

"DownstreamHeaderTransform": {
"Location": "[{one,one},{two,two}]"

},
"HttpHandlerOptions": {

(continues on next page)

16.7. Handling 302 Redirects 53

Ocelot, Release 20.0.0

(continued from previous page)

"AllowAutoRedirect": false,
}

If anyone wants to have a go at this please, help yourself!

16.9.1 Global Headers Transformation

We have pending open PR 1659 for the 1658 issue. Current 20.0 version provides Route-level Headers Transformation
feature, but we hope global transformations will be included in the next upcoming release.

Any ideas and proposals can be shared in the Discussions space of the repository!

54 Chapter 16. Headers Transformation

https://github.com/ThreeMammals/Ocelot/pull/1659
https://github.com/ThreeMammals/Ocelot/issues/1658
https://github.com/ThreeMammals/Ocelot/releases/tag/20.0.0
https://github.com/ThreeMammals/Ocelot/releases
https://github.com/ThreeMammals/Ocelot/discussions

CHAPTER

SEVENTEEN

KUBERNETES

Feature: Service Discovery

This feature was requested as part of issue 345 to add support for Kubernetes service discovery provider.

Ocelot will call the K8s endpoints API in a given namespace to get all of the endpoints for a pod and then load balance
across them. Ocelot used to use the services API to send requests to the K8s service but this was changed in PR 1134
because the service did not load balance as expected.

The first thing you need to do is install the NuGet package that provides Kubernetes support in Ocelot:

Install-Package Ocelot.Provider.Kubernetes

Then add the following to your ConfigureServices method:

services.AddOcelot().AddKubernetes();

If you have services deployed in Kubernetes, you will normally use the naming service to access them. Default
usePodServiceAccount = true, which means that Service Account using Pod to access the service of the K8s
cluster needs to be Service Account based on RBAC authorization:

public static class OcelotBuilderExtensions
{

public static IOcelotBuilder AddKubernetes(this IOcelotBuilder builder, bool␣
→˓usePodServiceAccount = true);
}

You can replicate a Permissive using RBAC role bindings (see Permissive RBAC Permissions), K8s API server and
token will read from pod.

kubectl create clusterrolebinding permissive-binding --clusterrole=cluster-admin --
→˓user=admin --user=kubelet --group=system:serviceaccounts

The following example shows how to set up a Route that will work in Kubernetes. The most important thing is the
ServiceName which is made up of the Kubernetes service name. We also need to set up the ServiceDiscoveryProvider
in GlobalConfiguration. The example here shows a typical configuration:

{
"Routes": [
{
"DownstreamPathTemplate": "/api/values",
"DownstreamScheme": "http",
"UpstreamPathTemplate": "/values",

(continues on next page)

55

https://github.com/ThreeMammals/Ocelot/issues/345
https://kubernetes.io/
https://github.com/ThreeMammals/Ocelot/pull/1134
https://www.nuget.org/packages/Ocelot.Provider.Kubernetes
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#permissive-rbac-permissions

Ocelot, Release 20.0.0

(continued from previous page)

"ServiceName": "downstreamservice",
"UpstreamHttpMethod": ["Get"]

}
],
"GlobalConfiguration": {
"ServiceDiscoveryProvider": {
"Host": "192.168.0.13",
"Port": 443,
"Token": "txpc696iUhbVoudg164r93CxDTrKRVWG",
"Namespace": "dev",
"Type": "kube"

}
}

}

Service deployment in Namespace dev, ServiceDiscoveryProvider type is kube, you also can set pollkube Ser-
viceDiscoveryProvider type. Note: Host, Port and Token are no longer in use.

You use Ocelot to poll Kubernetes for latest service information rather than per request. If you want to poll Kubernetes
for the latest services rather than per request (default behaviour) then you need to set the following configuration:

"ServiceDiscoveryProvider": {
// ...
"Namespace": "dev",
"Type": "pollkube",
"PollingInterval": 100

}

The polling interval is in milliseconds and tells Ocelot how often to call Kubernetes for changes in service configuration.

Please note, there are tradeoffs here. If you poll Kubernetes, it is possible Ocelot will not know if a service is down
depending on your polling interval and you might get more errors than if you get the latest services per request. This
really depends on how volatile your services are. We doubt it will matter for most people and polling may give a tiny
performance improvement over calling Kubernetes per request. There is no way for Ocelot to work these out for you.

If your downstream service resides in a different namespace, you can override the global setting at the Route-level by
specifying a ServiceNamespace:

"Routes": [
{
// ...
"ServiceName": "downstreamservice",
"ServiceNamespace": "downstream-namespace"

}
]

56 Chapter 17. Kubernetes

CHAPTER

EIGHTEEN

LOAD BALANCER

Ocelot can load balance across available downstream services for each Route. This means you can scale your down-
stream services and Ocelot can use them effectively.

The types of load balancer available are:

• LeastConnection tracks which services are dealing with requests and sends new requests to service with least
existing requests. The algorithm state is not distributed across a cluster of Ocelot’s.

• RoundRobin loops through available services and sends requests. The algorithm state is not distributed across
a cluster of Ocelot’s.

• NoLoadBalancer takes the first available service from config or service discovery.

• CookieStickySessions uses a cookie to stick all requests to a specific server. More info below.

You must choose in your configuration which load balancer to use.

18.1 Configuration

The following shows how to set up multiple downstream services for a Route using ocelot.json and then select the
LeastConnection load balancer. This is the simplest way to get load balancing set up.

{
"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put", "Delete"],
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "10.0.1.10", "Port": 5000 },
{ "Host": "10.0.1.11", "Port": 5000 }

],
"LoadBalancerOptions": {
"Type": "LeastConnection"

}
}

57

Ocelot, Release 20.0.0

18.2 Service Discovery

The following shows how to set up a Route using service discovery then select the LeastConnection load balancer.

{
// ...
"ServiceName": "product",
"LoadBalancerOptions": {
"Type": "LeastConnection"

}
}

When this is set up Ocelot will lookup the downstream host and port from the service discover provider and load balance
requests across any available services. If you add and remove services from the service discovery provider (Consul)
then Ocelot should respect this and stop calling services that have been removed and start calling services that have
been added.

18.3 CookieStickySessions Type

We have implemented a really basic sticky session type of load balancer. The scenario it is meant to support is you
have a bunch of downstream servers that don’t share session state, so if you get more than one request for one of these
servers then it should go to the same box each time or the session state might be incorrect for the given user. This
feature was requested in issue 322 though what the user wants is more complicated than just sticky sessions. Anyway,
we thought this would be a nice feature to have!

In order to set up CookieStickySessions load balancer you need to do something like the following:

{
"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put", "Delete"],
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "10.0.1.10", "Port": 5000 },
{ "Host": "10.0.1.11", "Port": 5000 }

],
"LoadBalancerOptions": {
"Type": "CookieStickySessions",
"Key": "ASP.NET_SessionId",
"Expiry": 1800000

}
}

The LoadBalancerOptions are

• Type this needs to be CookieStickySessions

• Key this is the key of the cookie you wish to use for the sticky sessions

• Expiry this is how long in milliseconds you want to the session to be stuck for. Remember this refreshes on
every request which is meant to mimick how sessions work usually.

If you have multiple Routes with the same LoadBalancerOptions then all of those Routes will use the same load
balancer for there subsequent requests. This means the sessions will be stuck across Routes.

58 Chapter 18. Load Balancer

https://github.com/ThreeMammals/Ocelot/issues/322

Ocelot, Release 20.0.0

Please note that if you give more than one DownstreamHostAndPort or you are using a Service Discovery provider
such as Consul and this returns more than one service then CookieStickySessions uses round robin to select the next
server. This is hard coded at the moment but could be changed.

18.4 Custom Load Balancers

David Lievrouw implemented a way to provide Ocelot with custom load balancer in PR 1155 (his issue 961).

In order to create and use a custom load balancer you can do the following. Below we setup a basic load balancing
config and not the Type is CustomLoadBalancer which is the name of a class we will setup to do load balancing.

{
"UpstreamPathTemplate": "/posts/{postId}",
"UpstreamHttpMethod": ["Put", "Delete"],
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "10.0.1.10", "Port": 5000 },
{ "Host": "10.0.1.11", "Port": 5000 }

],
"LoadBalancerOptions": {
"Type": "CustomLoadBalancer"

}
}

Then you need to create a class that implements the ILoadBalancer interface. Below is a simple round robin example:

public class CustomLoadBalancer : ILoadBalancer
{

private readonly Func<Task<List<Service>>> _services;
private readonly object _lock = new object();
private int _last;

public CustomLoadBalancer(Func<Task<List<Service>>> services)
{

_services = services;
}

public async Task<Response<ServiceHostAndPort>> Lease(HttpContext httpContext)
{

var services = await _services?.Invoke();
lock (_lock)
{

if (_last >= services.Count)
_last = 0;

var next = services[_last++];
return new OkResponse<ServiceHostAndPort>(next.HostAndPort);

}
}

public void Release(ServiceHostAndPort hostAndPort) { }
}

18.4. Custom Load Balancers 59

https://github.com/DavidLievrouw
https://github.com/ThreeMammals/Ocelot/pull/1155
https://github.com/ThreeMammals/Ocelot/issues/961

Ocelot, Release 20.0.0

Finally, you need to register this class with Ocelot.

We have used the most complex example below to show all of the data / types that can be passed into the factory that
creates load balancers.

Func<IServiceProvider, DownstreamRoute, IServiceDiscoveryProvider, CustomLoadBalancer>␣
→˓loadBalancerFactoryFunc =

(serviceProvider, Route, serviceDiscoveryProvider) => new␣
→˓CustomLoadBalancer(serviceDiscoveryProvider.Get);

services.AddOcelot()
.AddCustomLoadBalancer(loadBalancerFactoryFunc);

However, there is a much simpler example that will work the same:

services.AddOcelot()
.AddCustomLoadBalancer<CustomLoadBalancer>();

There are numerous extension methods to add a custom load balancer and the interface is as follows:

IOcelotBuilder AddCustomLoadBalancer<T>()
where T : ILoadBalancer, new();

IOcelotBuilder AddCustomLoadBalancer<T>(Func<T> loadBalancerFactoryFunc)
where T : ILoadBalancer;

IOcelotBuilder AddCustomLoadBalancer<T>(Func<IServiceProvider, T>␣
→˓loadBalancerFactoryFunc)
where T : ILoadBalancer;

IOcelotBuilder AddCustomLoadBalancer<T>(Func<DownstreamRoute, IServiceDiscoveryProvider,␣
→˓T> loadBalancerFactoryFunc)
where T : ILoadBalancer;

IOcelotBuilder AddCustomLoadBalancer<T>(Func<IServiceProvider, DownstreamRoute,␣
→˓IServiceDiscoveryProvider, T> loadBalancerFactoryFunc)
where T : ILoadBalancer;

When you enable custom load balancers Ocelot looks up your load balancer by its class name when it decides if it
should do load balancing. If it finds a match, it will use your load balaner to load balance. If Ocelot cannot match the
load balancer type in your configuration with the name of registered load balancer class then you will receive a HTTP
500 Internal Server Error. If your load balancer factory throw an exception when Ocelot calls it, you will receive a
HTTP 500 Internal Server Error.

Remember, if you specify no load balancer in your config, Ocelot will not try and load balance.

60 Chapter 18. Load Balancer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500

CHAPTER

NINETEEN

LOGGING

Ocelot uses the standard logging interfaces ILoggerFactory and ILogger<T> at the moment. This is encapsulated
in IOcelotLogger and IOcelotLoggerFactory with an implementation for the standard ASP.NET Core logging
stuff at the moment. This is because Ocelot adds some extra info to the logs such as request ID if it is configured.

There is a global error handler middleware that should catch any exceptions thrown and log them as errors.

Finally, if logging is set to Trace level, Ocelot will log starting, finishing and any middlewares that throw an exception
which can be quite useful.

The reason for not just using bog standard framework logging is that we could not work out how to override the request
id that get’s logged when setting IncludeScopes to true for logging settings. Nicely onto the next feature.

19.1 Warning

If you are logging to Console, you will get terrible performance. The team has had so many issues about performance
issues with Ocelot and it is always logging level Debug, logging to Console.

• Warning! Make sure you are logging to something proper in production environment!

• Use Error and Critical levels in production environment!

• Use Warning level in testing environment!

61

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-7.0
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20ExceptionHandlerMiddleware&type=code
https://notoneoffbritishisms.com/2015/03/27/bog-standard/
https://learn.microsoft.com/en-us/dotnet/api/system.console?view=net-7.0
https://learn.microsoft.com/en-us/dotnet/api/system.console?view=net-7.0

Ocelot, Release 20.0.0

62 Chapter 19. Logging

CHAPTER

TWENTY

METHOD TRANSFORMATION

Ocelot allows the user to change the HTTP request method that will be used when making a request to a downstream
service.

This achieved by setting the following Route configuration:

{
"UpstreamPathTemplate": "/{url}",
"DownstreamPathTemplate": "/{url}",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 54321 }

],
"UpstreamHttpMethod": ["Get"],
"DownstreamHttpMethod": "POST" // !

}

The key property here is DownstreamHttpMethod which is set as POST and the Route will only match on GET as set
by UpstreamHttpMethod.

This feature can be useful when interacting with downstream APIs that only support POST and you want to present
some kind of RESTful interface.

63

Ocelot, Release 20.0.0

64 Chapter 20. Method Transformation

CHAPTER

TWENTYONE

MIDDLEWARE INJECTION

Warning, use with caution! If you are seeing any exceptions or strange behavior in your middleware pipeline and you
are using any of the following. Remove them and try again!

When setting up Ocelot in your Startup.cs you can provide some additional middleware and override middleware.
This is done as follows:

var configuration = new OcelotPipelineConfiguration
{

PreErrorResponderMiddleware = async (context, next) =>
{

await next.Invoke();
}

};
app.UseOcelot(configuration);

In the example above the provided function will run before the first piece of Ocelot middleware. This allows a user to
supply any behaviors they want before and after the Ocelot pipeline has run. This means you can break everything, so
use at your own pleasure!

The user can set functions against the following (see more in the OcelotPipelineConfiguration class):

• PreErrorResponderMiddleware injection is already explained above.

• PreAuthenticationMiddleware injection allows the user to run pre authentication logic and then call Ocelot
authentication middleware.

• AuthenticationMiddleware overrides Ocelot authentication middleware.1

• PreAuthorizationMiddleware injection allows the user to run pre authorization logic and then call Ocelot
authorization middleware.

• AuthorizationMiddleware overrides Ocelots authorization middleware.Page 65, 1

• PreQueryStringBuilderMiddleware injection allows the user to manipulate the query string on the http
request before it is passed to Ocelot request creator.

Obviously you can just add mentioned Ocelot middleware overridings as normal before the call to app.UseOcelot().
It cannot be added after as Ocelot does not call the next Ocelot middleware overridings based on specified middleware
configuration. So, the next called middlewares will not affect Ocelot configuration.

1 Warning, use mentioned middlewares overridings with caution! Overridden middleware removes the default implementation! If you are
seeing any exceptions or strange behavior in your middleware pipeline, remove overridden middlewares and try again!

65

https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Middleware/OcelotPipelineConfiguration.cs

Ocelot, Release 20.0.0

21.1 ASP.NET Core Middlewares and Ocelot Pipeline Builder

Ocelot pipeline is a part of entire ASP.NET Core Middlewares conveyor aka app pipeline. The BuildOcelot-
Pipeline method encapsulates Ocelot pipeline. The last middleware in the BuildOcelotPipeline method is
HttpRequesterMiddleware that calls the next middleware, if added to the pipeline.

The internal HttpRequesterMiddleware is part of the pipeline but it is private and cannot be overridden, since this
middleware does not belong to the list of user’s public ones that can be overridden! So, this is the last middleware of
the entire Ocelot and ASP.NET pipeline, and it handles non-user operation. The last user (public) middleware that can
be overridden is PreQueryStringBuilderMiddleware being read from the pipeline configuration object, see previous
section.

Considering that PreQueryStringBuilderMiddleware and HttpRequesterMiddleware are the last user and sys-
tem middlewares, there are no other middlewares in the pipeline at all. But you can still extend the ASP.NET pipeline,
as shown in the following code:

app.UseOcelot().Wait();
app.UseMiddleware<MyCustomMiddleware>();

But we do not recommend adding this custom middleware before or after calling of UseOcelot() as it affects the
stability of the entire pipeline and has not been tested. Such kind of custom pipeline building is out of the Ocelot
pipeline model and the quality of the solution is at your own risk.

Finally, do not get confused about the distinction between system (private, non-overridden) and user (public, overridden)
middlewares. Private middlewares are hidden and cannot be overridden, but the entire ASP.NET pipeline can still be
extended. The public middlewares are fully customizable and can be overridden.

21.2 Future

The community shows an interest in adding more overriden middlewares. One of such request is PR 1497, and possibly
it will be included in a next upcoming release.

Anyway, in your opinion, if current overriden middlewares do not provide enough pipeline flexibility, you can open

new topic in Discussions space of the repository.

66 Chapter 21. Middleware Injection

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-7.0
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+BuildOcelotPipeline+path%3A%2F%5Esrc%5C%2FOcelot%5C%2FMiddleware%5C%2F%2F&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+BuildOcelotPipeline+path%3A%2F%5Esrc%5C%2FOcelot%5C%2FMiddleware%5C%2F%2F&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+HttpRequesterMiddleware+path%3A%2F%5Esrc%5C%2FOcelot%5C%2F%2F&type=code
https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Middleware/OcelotPipelineConfiguration.cs
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+UseHttpRequesterMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20BuildOcelotPipeline&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+PreQueryStringBuilderMiddleware+language%3AC%23&type=code&l=C%23
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20%22OcelotPipelineConfiguration%20pipelineConfiguration%22&type=code
https://github.com/ThreeMammals/Ocelot/blob/main/src/Ocelot/Middleware/OcelotPipelineConfiguration.cs
https://github.com/ThreeMammals/Ocelot/pull/1497
https://github.com/ThreeMammals/Ocelot/releases
https://github.com/ThreeMammals/Ocelot/discussions

CHAPTER

TWENTYTWO

QUALITY OF SERVICE

Label: QoS

Ocelot supports one QoS capability at the current time. You can set on a per Route basis if you want to use a circuit
breaker when making requests to a downstream service. This uses an awesome .NET library called Polly, check them
out in official repo.

The first thing you need to do if you want to use the Administration API is bring in the relevant NuGet package:

Install-Package Ocelot.Provider.Polly

Then in your ConfigureServices method to add Polly services we must call the AddPolly() extension of the
OcelotBuilder being returned by AddOcelot()1 like below:

services.AddOcelot()
.AddPolly();

Then add the following section to a Route configuration:

"QoSOptions": {
"ExceptionsAllowedBeforeBreaking": 3,
"DurationOfBreak": 1000,
"TimeoutValue": 5000

}

• You must set a number greater than 0 against ExceptionsAllowedBeforeBreaking for this rule to be imple-
mented.2

• DurationOfBreak means the circuit breaker will stay open for 1 second after it is tripped.

• TimeoutValue means if a request takes more than 5 seconds, it will automatically be timed out.

You can set the TimeoutValue in isolation of the ExceptionsAllowedBeforeBreaking and DurationOfBreak options:

"QoSOptions": {
"TimeoutValue": 5000

}

There is no point setting the other two in isolation as they affect each other!

If you do not add a QoS section, QoS will not be used, however Ocelot will default to a 90 seconds timeout on all
downstream requests. If someone needs this to be configurable, open an issue.Page 67, 2

1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder
method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

2 If something doesn’t work or you get stuck, please review current QoS issues filtering by label.

67

https://github.com/ThreeMammals/Ocelot/labels/QoS
https://www.thepollyproject.org/
https://github.com/App-vNext/Polly
https://www.nuget.org/packages/Ocelot.Provider.Polly
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+QoS&type=issues
https://github.com/ThreeMammals/Ocelot/labels/QoS

Ocelot, Release 20.0.0

68 Chapter 22. Quality of Service

CHAPTER

TWENTYTHREE

RATE LIMITING

23.1 Ocelot Own Implementation

Ocelot supports rate limiting of upstream requests so that your downstream services do not become overloaded.

The authors of this feature were inspired by @catcherwong article to finally write this documentation. This feature was
added by @geffzhang on GitHub! Thanks very much!

To get rate limiting working for a Route you need to add the following JSON to it:

"RateLimitOptions": {
"ClientWhitelist": [],
"EnableRateLimiting": true,
"Period": "1s",
"PeriodTimespan": 1,
"Limit": 1

}

• ClientWhitelist - This is an array that contains the whitelist of the client. It means that the client in this array
will not be affected by the rate limiting.

• EnableRateLimiting - This value specifies enable endpoint rate limiting.

• Period - This value specifies the period that the limit applies to, such as 1s, 5m, 1h, 1d and so on. If you make
more requests in the period than the limit allows then you need to wait for PeriodTimespan to elapse before you
make another request.

• PeriodTimespan - This value specifies that we can retry after a certain number of seconds.

• Limit - This value specifies the maximum number of requests that a client can make in a defined period.

You can also set the following in the GlobalConfiguration part of ocelot.json:

"GlobalConfiguration": {
"BaseUrl": "https://api.mybusiness.com",
"RateLimitOptions": {
"DisableRateLimitHeaders": false,
"QuotaExceededMessage": "Customize Tips!",
"HttpStatusCode": 123,
"ClientIdHeader": "Test"

}
}

• DisableRateLimitHeaders - This value specifies whether X-Rate-Limit and Retry-After headers are dis-
abled.

69

http://www.c-sharpcorner.com/article/building-api-gateway-using-ocelot-in-asp-net-core-rate-limiting-part-four/
https://github.com/ThreeMammals/Ocelot/commits?author=geffzhang

Ocelot, Release 20.0.0

• QuotaExceededMessage - This value specifies the exceeded message.

• HttpStatusCode - This value specifies the returned HTTP status code when rate limiting occurs.

• ClientIdHeader - Allows you to specifiy the header that should be used to identify clients. By default it is
ClientId

23.2 Future and ASP.NET Core Implementation

The Ocelot team considers to redesign Rate Limiting feature, because of Announcing Rate Limiting for .NET by Bren-
nan Conroy on July 13th, 2022. There is no decision at the moment, and the old version of the feature is included as a
part of release 20.0 for .NET 7.

See more about new feature being added into ASP.NET Core 7.0 release:

• RateLimiter Class, since ASP.NET Core 7.0

• System.Threading.RateLimiting NuGet package

• Rate limiting middleware in ASP.NET Core article by Arvin Kahbazi, Maarten Balliauw, and Rick Anderson

However, it makes sense to keep the old implementation as a Ocelot built-in native feature, but we are going to migrate
to the new Rate Limiter from Microsoft.AspNetCore.RateLimiting namespace.

Please, share your opinion to us in the Discussions space of the repository.

70 Chapter 23. Rate Limiting

https://devblogs.microsoft.com/dotnet/announcing-rate-limiting-for-dotnet/
https://github.com/ThreeMammals/Ocelot/releases/tag/20.0.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.ratelimiting.ratelimiter?view=aspnetcore-7.0
https://www.nuget.org/packages/System.Threading.RateLimiting
https://learn.microsoft.com/en-us/aspnet/core/performance/rate-limit?view=aspnetcore-7.0
https://github.com/ThreeMammals/Ocelot/discussions

CHAPTER

TWENTYFOUR

REQUEST AGGREGATION

Ocelot allows you to specify Aggregate Routes that compose multiple normal Routes and map their responses into one
object. This is usually where you have a client that is making multiple requests to a server where it could just be one.
This feature allows you to start implementing back-end for a front-end (BFF) type architecture with Ocelot.

This feature was requested as part of issue 79 and further improvements were made as part of issue 298.

In order to set this up you must do something like the following in your ocelot.json. Here we have specified two normal
Routes and each one has a Key property. We then specify an Aggregate that composes the two Routes using their keys
in the RouteKeys list and says then we have the UpstreamPathTemplate which works like a normal Route. Obviously
you cannot have duplicate UpstreamPathTemplates between Routes and Aggregates. You can use all of Ocelot’s
normal Route options apart from RequestIdKey (explained in gotchas below).

24.1 Advanced Register Your Own Aggregators

Ocelot started with just the basic request aggregation and since then we have added a more advanced method that let’s
the user take in the responses from the downstream services and then aggregate them into a response object.

The ocelot.json setup is pretty much the same as the basic aggregation approach apart from you need to add an Ag-
gregator property like below:

{
"Routes": [
{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/laura",
"DownstreamPathTemplate": "/",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 51881 }

],
"Key": "Laura" // <--

},
{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/tom",
"DownstreamPathTemplate": "/",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 51882 }

],
(continues on next page)

71

https://github.com/ThreeMammals/Ocelot/issues/79
https://github.com/ThreeMammals/Ocelot/issues/298

Ocelot, Release 20.0.0

(continued from previous page)

"Key": "Tom" // <--
}

],
"Aggregates": [
{
"UpstreamPathTemplate": "/",
"RouteKeys": [

"Tom",
"Laura"

],
"Aggregator": "FakeDefinedAggregator"

}
]

}

Here we have added an aggregator called FakeDefinedAggregator. Ocelot is going to look for this aggregator when
it tries to aggregate this Route.

In order to make the aggregator available we must add the FakeDefinedAggregator to the OcelotBuilder being
returned by AddOcelot()1 like below:

services
.AddOcelot()
.AddSingletonDefinedAggregator<FakeDefinedAggregator>();

Now when Ocelot tries to aggregate the Route above it will find the FakeDefinedAggregator in the container and
use it to aggregate the Route. Because the FakeDefinedAggregator is registered in the container you can add any
dependencies it needs into the container like below:

services.AddSingleton<FooDependency>();
// ...
services.AddOcelot()

.AddSingletonDefinedAggregator<FooAggregator>();

In this example FooAggregator takes a dependency on FooDependency and it will be resolved by the container.

In addition to this Ocelot lets you add transient aggregators like below:

services
.AddOcelot()
.AddTransientDefinedAggregator<FakeDefinedAggregator>();

In order to make an Aggregator you must implement this interface:

public interface IDefinedAggregator
{

Task<DownstreamResponse> Aggregate(List<HttpContext> responses);
}

With this feature you can pretty much do whatever you want because the HttpContext objects contain the results of
all the aggregate requests. Please note, if the HttpClient throws an exception when making a request to a Route in the

1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder
method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

72 Chapter 24. Request Aggregation

Ocelot, Release 20.0.0

aggregate then you will not get a HttpContext for it, but you would for any that succeed. If it does throw an exception,
this will be logged.

24.2 Basic Expecting JSON from Downstream Services

{
"Routes": [
{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/laura",
"DownstreamPathTemplate": "/",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 51881 }

],
"Key": "Laura"

},
{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/tom",
"DownstreamPathTemplate": "/",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 51882 }

],
"Key": "Tom"

}
],
"Aggregates": [
{
"UpstreamPathTemplate": "/",
"RouteKeys": [

"Tom",
"Laura"

]
}

]
}

You can also set UpstreamHost and RouteIsCaseSensitive in the Aggregate configuration. These behave the same as
any other Routes.

If the Route /tom returned a body of {"Age": 19} and /laura returned {"Age": 25}, the the response after
aggregation would be as follows:

{"Tom":{"Age": 19},"Laura":{"Age": 25}}

At the moment the aggregation is very simple. Ocelot just gets the response from your downstream service and sticks
it into a JSON dictionary as above. With the Route key being the key of the dictionary and the value the response body
from your downstream service. You can see that the object is just JSON without any pretty spaces etc.

Note, all headers will be lost from the downstream services response.

Ocelot will always return content type application/json with an aggregate request.

24.2. Basic Expecting JSON from Downstream Services 73

Ocelot, Release 20.0.0

If you downstream services return a 404 Not Found, the aggregate will just return nothing for that downstream service.
It will not change the aggregate response into a 404 even if all the downstreams return a 404.

24.3 Gotchas

You cannot use Routes with specific RequestIdKeys as this would be crazy complicated to track.

Aggregation only supports the GET HTTP verb.

74 Chapter 24. Request Aggregation

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404

CHAPTER

TWENTYFIVE

REQUEST ID

aka Correlation ID

Ocelot supports a client sending a request ID in the form of a header. If set, Ocelot will use the requestId for logging
as soon as it becomes available in the middleware pipeline. Ocelot will also forward the request ID with the specified
header to the downstream service.

You can still get the ASP.NET Core request ID in the logs if you set IncludeScopes true in your logging config.

In order to use the Request ID feature you have two options.

25.1 Global

In your ocelot.json set the following in the GlobalConfiguration section. This will be used for all requests into Ocelot.

"GlobalConfiguration": {
"RequestIdKey": "OcRequestId"

}

We recommend using the GlobalConfiguration unless you really need it to be Route specific.

25.2 Route

If you want to override this for a specific Route, add the following to ocelot.json for the specific Route:

"RequestIdKey": "OcRequestId"

Once Ocelot has identified the incoming requests matching Route object it will set the request ID based on the Route
configuration.

25.3 Gotcha

This can lead to a small gotcha. If you set a GlobalConfiguration, it is possible to get one request ID until the Route is
identified and then another after that because the request ID key can change. This is by design and is the best solution
we can think of at the moment. In this case the OcelotLogger will show the request ID and previous request ID in
the logs.

Below is an example of the logging when set at Debug level for a normal request:

75

Ocelot, Release 20.0.0

dbug: Ocelot.Errors.Middleware.ExceptionHandlerMiddleware[0]
requestId: asdf, previousRequestId: no previous request id, message: ocelot␣

→˓pipeline started,
dbug: Ocelot.DownstreamRouteFinder.Middleware.DownstreamRouteFinderMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message: upstream url␣
→˓path is {upstreamUrlPath},
dbug: Ocelot.DownstreamRouteFinder.Middleware.DownstreamRouteFinderMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message: downstream␣
→˓template is {downstreamRoute.Data.Route.DownstreamPath},
dbug: Ocelot.RateLimit.Middleware.ClientRateLimitMiddleware[0]

requestId: asdf, previousRequestId: no previous request id, message:␣
→˓EndpointRateLimiting is not enabled for Ocelot.Values.PathTemplate,
dbug: Ocelot.Authorization.Middleware.AuthorizationMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: /posts/{postId} route does not␣
→˓require user to be authorized,
dbug: Ocelot.DownstreamUrlCreator.Middleware.DownstreamUrlCreatorMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: downstream url is
→˓{downstreamUrl.Data.Value},
dbug: Ocelot.Request.Middleware.HttpRequestBuilderMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: setting upstream request,
dbug: Ocelot.Requester.Middleware.HttpRequesterMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: setting http response message,
dbug: Ocelot.Responder.Middleware.ResponderMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: no pipeline errors, setting and␣
→˓returning completed response,
dbug: Ocelot.Errors.Middleware.ExceptionHandlerMiddleware[0]

requestId: 1234, previousRequestId: asdf, message: ocelot pipeline finished,

76 Chapter 25. Request ID

CHAPTER

TWENTYSIX

ROUTING

Ocelot’s primary functionality is to take incoming HTTP requests and forward them on to a downstream service. Ocelot
currently only supports this in the form of another HTTP request (in the future this could be any transport mechanism).

Ocelot describes the routing of one request to another as a Route. In order to get anything working in Ocelot you need
to set up a Route in the configuration.

{
"Routes": []

}

To configure a Route you need to add one to the Routes JSON array.

{
"UpstreamHttpMethod": ["Put", "Delete"],
"UpstreamPathTemplate": "/posts/{postId}",
"DownstreamPathTemplate": "/api/posts/{postId}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 80 }

]
}

The DownstreamPathTemplate, DownstreamScheme and DownstreamHostAndPorts define the URL that a request
will be forwarded to.

The DownstreamHostAndPorts property is a collection that defines the host and port of any downstream services that
you wish to forward requests to. Usually this will just contain a single entry, but sometimes you might want to load
balance requests to your downstream services and Ocelot allows you add more than one entry and then select a load
balancer.

The UpstreamPathTemplate property is the URL that Ocelot will use to identify which DownstreamPathTemplate
to use for a given request. The UpstreamHttpMethod is used so Ocelot can distinguish between requests with different
HTTP verbs to the same URL. You can set a specific list of HTTP methods or set an empty list to allow any of them.

77

Ocelot, Release 20.0.0

26.1 Placeholders

In Ocelot you can add placeholders for variables to your Templates in the form of {something}. The placeholder vari-
able needs to be present in both the DownstreamPathTemplate and UpstreamPathTemplate properties. When it is
Ocelot will attempt to substitute the value in the UpstreamPathTemplate placeholder into the DownstreamPathTem-
plate for each request Ocelot processes.

You can also do a Catch All type of Route e.g.

{
"UpstreamHttpMethod": ["Get", "Post"],
"UpstreamPathTemplate": "/{everything}",
"DownstreamPathTemplate": "/api/{everything}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 80 }

]
}

This will forward any path + query string combinations to the downstream service after the path /api.

Note, the default Routing configuration is case insensitive!

In order to change this you can specify on a per Route basis the following setting:

"RouteIsCaseSensitive": true

This means that when Ocelot tries to match the incoming upstream URL with an upstream template the evaluation will
be case sensitive.

26.2 Catch All

Ocelot’s routing also supports a Catch All style routing where the user can specify that they want to match all traffic.

If you set up your config like below, all requests will be proxied straight through. The placeholder {url} name is not
significant, any name will work.

{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/{url}",
"DownstreamPathTemplate": "/{url}",
"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 80 }

]
}

The Catch All has a lower priority than any other Route. If you also have the Route below in your config then Ocelot
would match it before the Catch All.

{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/",
"DownstreamPathTemplate": "/",

(continues on next page)

78 Chapter 26. Routing

Ocelot, Release 20.0.0

(continued from previous page)

"DownstreamScheme": "https",
"DownstreamHostAndPorts": [
{ "Host": "10.0.10.1", "Port": 80 }

]
}

26.3 Upstream Host

This feature allows you to have Routes based on the upstream host. This works by looking at the Host header the client
has used and then using this as part of the information we use to identify a Route.

In order to use this feature please add the following to your config:

{
"UpstreamHost": "somedomain.com"

}

The Route above will only be matched when the Host header value is somedomain.com.

If you do not set UpstreamHost on a Route then any Host header will match it. This means that if you have two Routes
that are the same, apart from the UpstreamHost, where one is null and the other set Ocelot will favour the one that has
been set.

This feature was requested as part of issue 216.

26.4 Priority

You can define the order you want your Routes to match the Upstream HttpRequest by including a Priority property
in ocelot.json. See issue 270 for reference.

{
"Priority": 0

}

0 is the lowest priority, Ocelot will always use 0 for /{catchAll} Routes and this is still hardcoded. After that you
are free to set any priority you wish.

e.g. you could have

{
"UpstreamPathTemplate": "/goods/{catchAll}",
"Priority": 0

}

and

{
"UpstreamPathTemplate": "/goods/delete",
"Priority": 1

}

26.3. Upstream Host 79

https://github.com/ThreeMammals/Ocelot/pull/216
https://github.com/ThreeMammals/Ocelot/pull/270

Ocelot, Release 20.0.0

In the example above if you make a request into Ocelot on /goods/delete, Ocelot will match /goods/deleteRoute.
Previously it would have matched /goods/{catchAll}, because this is the first Route in the list!

26.5 Dynamic Routing

This feature was requested in issue 340.

The idea is to enable dynamic routing when using a service discovery provider so you don’t have to provide the Route
config. See the docs Service Discovery if this sounds interesting to you.

26.6 Query Strings

Ocelot allows you to specify a query string as part of the DownstreamPathTemplate like the example below:

{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/api/units/{subscriptionId}/{unitId}/updates",
"DownstreamPathTemplate": "/api/subscriptions/{subscriptionId}/updates?unitId={unitId}

→˓",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 50110 }

]
}

In this example Ocelot will use the value from the {unitId} placeholder in the upstream path template and add it to
the downstream request as a query string parameter called unitId!

Ocelot will also allow you to put query string parameters in the UpstreamPathTemplate so you can match certain
queries to certain services:

{
"UpstreamHttpMethod": ["Get"],
"UpstreamPathTemplate": "/api/subscriptions/{subscriptionId}/updates?unitId={unitId}",
"DownstreamPathTemplate": "/api/units/{subscriptionId}/{unitId}/updates",
"DownstreamScheme": "http",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 50110 }

]
}

In this example Ocelot will only match requests that have a matching URL path and the query string starts with
unitId=something. You can have other queries after this but you must start with the matching parameter. Also
Ocelot will swap the {unitId} parameter from the query string and use it in the downstream request path.

80 Chapter 26. Routing

https://github.com/ThreeMammals/Ocelot/issues/340

Ocelot, Release 20.0.0

26.7 Security Options

Ocelot allows you to manage multiple patterns for allowed/blocked IPs using the IPAddressRange package with MPL-
2.0 License.

This feature is designed to allow greater IP management in order to include or exclude a wide IP range via CIDR
notation or IP range. The current patterns managed are the following:

• Single IP: 192.168.1.1

• IP Range: 192.168.1.1-192.168.1.250

• IP Short Range: 192.168.1.1-250

• IP Range with subnet: 192.168.1.0/255.255.255.0

• CIDR: 192.168.1.0/24

• CIDR for IPv6: fe80::/10

• The allowed/blocked lists are evaluated during configuration loading

• The ExcludeAllowedFromBlocked property is intended to provide the ability to specify a wide range of blocked
IP addresses and allow a subrange of IP addresses. Default value: false

• The absence of a property in SecurityOptions is allowed, it takes the default value.

{
"SecurityOptions": {
"IPBlockedList": ["192.168.0.0/23"],
"IPAllowedList": ["192.168.0.15", "192.168.1.15"],
"ExcludeAllowedFromBlocked": true

}
}

This feature was requested as part of issue 1400.

26.7. Security Options 81

https://github.com/jsakamoto/ipaddressrange
https://github.com/jsakamoto/ipaddressrange/blob/master/LICENSE
https://github.com/jsakamoto/ipaddressrange/blob/master/LICENSE
https://github.com/ThreeMammals/Ocelot/issues/1400

Ocelot, Release 20.0.0

82 Chapter 26. Routing

CHAPTER

TWENTYSEVEN

SERVICE DISCOVERY

Ocelot allows you to specify a service discovery provider and will use this to find the host and port for the downstream
service to which Ocelot forwards the request. At the moment this is only supported in the GlobalConfiguration section,
which means the same service discovery provider will be used for all Routes for which you specify a ServiceName at
Route level.

27.1 Consul

Namespace: Ocelot.Provider.Consul

The first thing you need to do is install the Ocelot.Provider.Consul package that provides Consul support in Ocelot:

Install-Package Ocelot.Provider.Consul

Then add the following to your ConfigureServices method:

services.AddOcelot()
.AddConsul();

Currently there are 2 types of Consul service discovery providers: Consul and PollConsul. The default provider is
Consul, which means that if ConsulProviderFactory cannot read, understand, or parse the Type property of the
ServiceProviderConfiguration object, then a Consul provider instance is created by the factory.

Explore these types of providers and understand the differences in the subsections below.

27.1.1 Consul Provider Type

Class: Ocelot.Provider.Consul.Consul

The following is required in the GlobalConfiguration. The ServiceDiscoveryProvider property is required, and if you
do not specify a host and port, the Consul default ones will be used.

Please note the Scheme option defaults to HTTP. It was added in PR 1154. It defaults to HTTP to not introduce a breaking
change.

"ServiceDiscoveryProvider": {
"Scheme": "https",
"Host": "localhost",
"Port": 8500,
"Type": "Consul"

}

83

https://github.com/ThreeMammals/Ocelot/tree/main/src/Ocelot.Provider.Consul
https://www.nuget.org/packages/Ocelot.Provider.Consul
https://www.consul.io/
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+Consul&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+%22FileGlobalConfiguration+GlobalConfiguration%22&type=code
https://github.com/ThreeMammals/Ocelot/pull/1154

Ocelot, Release 20.0.0

In the future we can add a feature that allows Route specific configuration.

In order to tell Ocelot a Route is to use the service discovery provider for its host and port you must add the ServiceName
and load balancer you wish to use when making requests downstream. At the moment Ocelot has a RoundRobin and
LeastConnection algorithms you can use. If no load balancer is specified, Ocelot will not load balance requests.

{
"ServiceName": "product",
"LoadBalancerOptions": {
"Type": "LeastConnection"

}
}

When this is set up Ocelot will lookup the downstream host and port from the service discovery provider and load
balance requests across any available services.

27.1.2 PollConsul Provider Type

Class: Ocelot.Provider.Consul.PollConsul

A lot of people have asked the team to implement a feature where Ocelot polls Consul for latest service information
rather than per request. If you want to poll Consul for the latest services rather than per request (default behaviour)
then you need to set the following configuration:

"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8500,
"Type": "PollConsul",
"PollingInterval": 100

}

The polling interval is in milliseconds and tells Ocelot how often to call Consul for changes in service configuration.

Please note, there are tradeoffs here. If you poll Consul it is possible Ocelot will not know if a service is down depending
on your polling interval and you might get more errors than if you get the latest services per request. This really depends
on how volatile your services are. We doubt it will matter for most people and polling may give a tiny performance
improvement over calling Consul per request (as sidecar agent). If you are calling a remote Consul agent then polling
will be a good performance improvement.

27.1.3 Service Definition

Your services need to be added to Consul something like below (C# style but hopefully this make sense). . . The only
important thing to note is not to add http or https to the Address field. We have been contacted before about not
accepting scheme in Address. After reading this we do not think the scheme should be in there.

In C#

new AgentService()
{

Service = "some-service-name",
Address = "localhost",
Port = 8080,
ID = "some-id",

}

84 Chapter 27. Service Discovery

https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20RoundRobin&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot+LeastConnection&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20PollConsul&type=code
https://developer.hashicorp.com/consul/docs/agent/config

Ocelot, Release 20.0.0

Or, in JSON

"Service": {
"ID": "some-id",
"Service": "some-service-name",
"Address": "localhost",
"Port": 8080

}

27.1.4 ACL Token

If you are using ACL with Consul, Ocelot supports adding the X-Consul-Token header. In order so this to work you
must add the additional property below:

"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8500,
"Type": "Consul",
"Token": "footoken"

}

Ocelot will add this token to the Consul client that it uses to make requests and that is then used for every request.

27.2 Eureka

This feature was requested as part of issue 262 to add support for Netflix Eureka service discovery provider. The main
reason for this is it is a key part of Steeltoe which is something to do with Pivotal! Anyway enough of the background.

The first thing you need to do is install the Ocelot.Provider.Eureka package that provides Eureka support in Ocelot:

Install-Package Ocelot.Provider.Eureka

Then add the following to your ConfigureServices method.

s.AddOcelot().AddEureka();

Then in order to get this working add the following to ocelot.json:

"ServiceDiscoveryProvider": {
"Type": "Eureka"

}

And following the guide here you may also need to add some stuff to appsettings.json. For example the JSON below
tells the Steeltoe / Pivotal services where to look for the service discovery server and if the service should register with
it:

"eureka": {
"client": {
"serviceUrl": "http://localhost:8761/eureka/",
"shouldRegisterWithEureka": false,
"shouldFetchRegistry": true

(continues on next page)

27.2. Eureka 85

https://developer.hashicorp.com/consul/commands/acl/token
https://github.com/ThreeMammals/Ocelot/issues/262
https://www.nuget.org/packages/Steeltoe.Discovery.Eureka
https://steeltoe.io/
https://pivotal.io/platform
https://www.nuget.org/packages/Ocelot.Provider.Eureka
https://steeltoe.io/docs/steeltoe-discovery/

Ocelot, Release 20.0.0

(continued from previous page)

}
}

If shouldRegisterWithEureka is false then shouldFetchRegistry will defaut to true, so you need not it explicitly
but left it in there.

Ocelot will now register all the necessary services when it starts up and if you have the JSON above will register itself
with Eureka. One of the services polls Eureka every 30 seconds (default) and gets the latest service state and persists
this in memory. When Ocelot asks for a given service it is retrieved from memory so performance is not a big problem.

Ocelot will use the scheme (http, https) set in Eureka if these values are not provided in ocelot.json

27.3 Dynamic Routing

This feature was requested in issue 340. The idea is to enable dynamic routing when using a service discovery provider
(see that section of the docs for more info). In this mode Ocelot will use the first segment of the upstream path to
lookup the downstream service with the service discovery provider.

An example of this would be calling Ocelot with a URL like https://api.mywebsite.com/product/products.
Ocelot will take the first segment of the path which is product and use it as a key to look up the service in Consul. If
Consul returns a service, Ocelot will request it on whatever host and port comes back from Consul plus the remaining
path segments in this case products thus making the downstream call http://hostfromconsul:portfromconsul/
products. Ocelot will apprend any query string to the downstream URL as normal.

Note, in order to enable dynamic routing you need to have 0 Routes in your config. At the moment you cannot mix
dynamic and configuration Routes. In addition to this you need to specify the Service Discovery provider details as
outlined above and the downstream http/https scheme as DownstreamScheme.

In addition to that you can set RateLimitOptions, QoSOptions, LoadBalancerOptions and HttpHandlerOptions,
DownstreamScheme (You might want to call Ocelot on https but talk to private services over http) that will be applied
to all of the dynamic Routes.

The config might look something like:

{
"Routes": [],
"Aggregates": [],
"GlobalConfiguration": {
"RequestIdKey": null,
"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8500,
"Type": "Consul",
"Token": null,
"ConfigurationKey": null

},
"RateLimitOptions": {
"ClientIdHeader": "ClientId",
"QuotaExceededMessage": null,
"RateLimitCounterPrefix": "ocelot",
"DisableRateLimitHeaders": false,
"HttpStatusCode": 429

},
(continues on next page)

86 Chapter 27. Service Discovery

https://github.com/ThreeMammals/Ocelot/issues/340

Ocelot, Release 20.0.0

(continued from previous page)

"QoSOptions": {
"ExceptionsAllowedBeforeBreaking": 0,
"DurationOfBreak": 0,
"TimeoutValue": 0

},
"BaseUrl": null,
"LoadBalancerOptions": {
"Type": "LeastConnection",
"Key": null,
"Expiry": 0

},
"DownstreamScheme": "http",
"HttpHandlerOptions": {
"AllowAutoRedirect": false,
"UseCookieContainer": false,
"UseTracing": false

}
}

}

Ocelot also allows you to set DynamicRoutes collection which lets you set rate limiting rules per downstream service.
This is useful if you have for example a product and search service and you want to rate limit one more than the other.
An example of this would be as follows:

{
"DynamicRoutes": [
{
"ServiceName": "product",
"RateLimitRule": {
"ClientWhitelist": [],
"EnableRateLimiting": true,
"Period": "1s",
"PeriodTimespan": 1000.0,
"Limit": 3

}
}

],
"GlobalConfiguration": {
"RequestIdKey": null,
"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 8523,
"Type": "Consul"

},
"RateLimitOptions": {
"ClientIdHeader": "ClientId",
"QuotaExceededMessage": "",
"RateLimitCounterPrefix": "",
"DisableRateLimitHeaders": false,
"HttpStatusCode": 428

},
"DownstreamScheme": "http"

(continues on next page)

27.3. Dynamic Routing 87

Ocelot, Release 20.0.0

(continued from previous page)

}
}

This configuration means that if you have a request come into Ocelot on /product/* then dynamic routing will kick
in and Ocelot will use the rate limiting set against the product service in the DynamicRoutes section.

Please take a look through all of the docs to understand these options.

27.4 Custom Providers

Ocelot also allows you to create your own Service Discovery implementation. This is done by implementing the
IServiceDiscoveryProvider interface, as shown in the following example:

public class MyServiceDiscoveryProvider : IServiceDiscoveryProvider
{

private readonly DownstreamRoute _downstreamRoute;

public MyServiceDiscoveryProvider(DownstreamRoute downstreamRoute)
{

_downstreamRoute = downstreamRoute;
}

public async Task<List<Service>> Get()
{

var services = new List<Service>();
//...
//Add service(s) to the list matching the _downstreamRoute
return services;

}
}

And set its class name as the provider type in ocelot.json:

"GlobalConfiguration": {
"ServiceDiscoveryProvider": {
"Type": "MyServiceDiscoveryProvider"

}
}

Finally, in the application’s ConfigureServices method, register a ServiceDiscoveryFinderDelegate to initialize
and return the provider:

ServiceDiscoveryFinderDelegate serviceDiscoveryFinder = (provider, config, route) =>
{

return new MyServiceDiscoveryProvider(route);
};
services.AddSingleton(serviceDiscoveryFinder);
services.AddOcelot();

88 Chapter 27. Service Discovery

Ocelot, Release 20.0.0

27.4.1 Custom Provider Sample

In order to introduce a basic template for a custom Service Discovery provider, we’ve prepared a good sample:

Link: samples / OcelotServiceDiscovery
Solution: Ocelot.Samples.ServiceDiscovery.sln

This solution contains the following projects:

• ApiGateway

• DownstreamService

This solution is ready for any deployment. All services are bound, meaning all ports and hosts are prepared for imme-
diate use (running in Visual Studio).

All instructions for running this solution are in README.md.

DownstreamService

This project provides a single downstream service that can be reused across ApiGateway routes. It has multiple launch-
Settings.json profiles for your favorite launch and hosting scenarios: Visual Studio running sessions, Kestrel console
hosting, and Docker deployments.

ApiGateway

This project includes a custom Service Discovery provider and it only has route(s) to DownstreamService services in
the ocelot.json file. You can add more routes!

The main source code for the custom provider is in the ServiceDiscovery folder: the MyServiceDiscoveryProvider
and MyServiceDiscoveryProviderFactory classes. You are welcome to design and develop them!

Additionally, the cornerstone of this custom provider is the ConfigureServicesmethod, where you can choose design
and implementation options: simple or more complex:

builder.ConfigureServices(s =>
{

// Perform initialization from application configuration or hardcode/choose the best␣
→˓option.
bool easyWay = true;

if (easyWay)
{

// Design #1. Define a custom finder delegate to instantiate a custom provider␣
→˓under the default factory, which is ServiceDiscoveryProviderFactory

s.AddSingleton<ServiceDiscoveryFinderDelegate>((serviceProvider, config,␣
→˓downstreamRoute)

=> new MyServiceDiscoveryProvider(serviceProvider, config, downstreamRoute));
}
else
{

// Design #2. Abstract from the default factory␣
→˓(ServiceDiscoveryProviderFactory) and from FinderDelegate,

// and create your own factory by implementing the␣
→˓IServiceDiscoveryProviderFactory interface.

s.RemoveAll<IServiceDiscoveryProviderFactory>();
(continues on next page)

27.4. Custom Providers 89

https://github.com/ThreeMammals/Ocelot/tree/main/samples
https://github.com/ThreeMammals/Ocelot/tree/main/samples/OcelotServiceDiscovery
https://github.com/ThreeMammals/Ocelot/blob/main/samples/OcelotServiceDiscovery/Ocelot.Samples.ServiceDiscovery.sln
https://github.com/ThreeMammals/Ocelot/blob/main/samples/OcelotServiceDiscovery/README.md
https://github.com/ThreeMammals/Ocelot/tree/main/samples/OcelotServiceDiscovery/ApiGateway/ServiceDiscovery

Ocelot, Release 20.0.0

(continued from previous page)

s.AddSingleton<IServiceDiscoveryProviderFactory,␣
→˓MyServiceDiscoveryProviderFactory>();

// It will not be called, but it is necessary for internal validators, it is␣
→˓also a lifehack

s.AddSingleton<ServiceDiscoveryFinderDelegate>((serviceProvider, config,␣
→˓downstreamRoute) => null);

}

s.AddOcelot();
});

The easy way, lite design means that you only design the provider class, and specify
ServiceDiscoveryFinderDelegate object for default ServiceDiscoveryProviderFactory in Ocelot core.

A more complex design means that you design both provider and provider factory classes. After this, you
need to add the IServiceDiscoveryProviderFactory interface to the DI container, removing the default
registered ServiceDiscoveryProviderFactory class. Note that in this case the Ocelot pipeline will not
use ServiceDiscoveryProviderFactory by default. Additionally, you do not need to specify "Type":
"MyServiceDiscoveryProvider" in the ServiceDiscoveryProvider properties of the GlobalConfiguration set-
tings. But you can leave this Type option for compatibility between both designs.

90 Chapter 27. Service Discovery

CHAPTER

TWENTYEIGHT

SERVICE FABRIC

If you have services deployed in Azure Service Fabric you will normally use the naming service to access them.

The following example shows how to set up a Route that will work in Service Fabric. The most important thing is the
ServiceName which is made up of the Service Fabric application name then the specific service name. We also need
to set up the ServiceDiscoveryProvider in GlobalConfiguration. The example here shows a typical configuration. It
assumes Service Fabric is running on localhost and that the naming service is on port 19081.

The example below is taken from the samples/OcelotServiceFabric folder so please check it if this doesn’t make sense!

{
"Routes": [
{
"DownstreamScheme": "http",
"DownstreamPathTemplate": "/api/values",
"UpstreamPathTemplate": "/EquipmentInterfaces",
"UpstreamHttpMethod": ["Get"],
"ServiceName": "OcelotServiceApplication/OcelotApplicationService"

}
],
"GlobalConfiguration": {
"RequestIdKey": "OcRequestId",
"ServiceDiscoveryProvider": {
"Host": "localhost",
"Port": 19081,
"Type": "ServiceFabric"

}
}

}

If you are using stateless / guest exe services, Ocelot will be able to proxy through the naming service without anything
else. However, if you are using statefull / actor services, you must send the PartitionKind and PartitionKey query
string values with the client request e.g.

GET http://ocelot.com/EquipmentInterfaces?PartitionKind=xxx&PartitionKey=xxx

There is no way for Ocelot to work these out for you.

91

https://azure.microsoft.com/en-us/products/service-fabric/
https://github.com/ThreeMammals/Ocelot/tree/main/samples/OcelotServiceFabric
http://ocelot.com/EquipmentInterfaces?PartitionKind=xxx&PartitionKey=xxx

Ocelot, Release 20.0.0

92 Chapter 28. Service Fabric

CHAPTER

TWENTYNINE

TRACING

This page details how to perform distributed tracing with Ocelot.

29.1 OpenTracing

Ocelot providers tracing functionality from the excellent OpenTracing API for .NET project. The code for the Ocelot
integration can be found in Ocelot.Tracing.OpenTracing project.

The example below uses C# Client for Jaeger client to provide the tracer used in Ocelot. In order to add OpenTracing
services we must call the AddOpenTracing() extension of the OcelotBuilder being returned by AddOcelot()1

like below:

services.AddSingleton<ITracer>(sp =>
{

var loggerFactory = sp.GetService<ILoggerFactory>();
Configuration config = new Configuration(context.HostingEnvironment.ApplicationName,␣

→˓loggerFactory);

var tracer = config.GetTracer();
GlobalTracer.Register(tracer);
return tracer;

});

services
.AddOcelot()
.AddOpenTracing();

Then in your ocelot.json add the following to the Route you want to trace:

"HttpHandlerOptions": {
"UseTracing": true

}

Ocelot will now send tracing information to Jaeger when this Route is called.
1 The AddOcelot method adds default ASP.NET services to DI-container. You could call another more extended AddOcelotUsingBuilder

method while configuring services to build and use custom builder via an IMvcCoreBuilder interface object. See more instructions in Dependency
Injection, “The AddOcelotUsingBuilder method” section.

93

https://github.com/opentracing/opentracing-csharp
https://github.com/ThreeMammals/Ocelot/tree/main/src/Ocelot.Tracing.OpenTracing
https://github.com/jaegertracing/jaeger-client-csharp
https://opentracing.io/
https://www.jaegertracing.io/

Ocelot, Release 20.0.0

29.1.1 OpenTracing Status

The OpenTracing project was archived on January 31, 2022 (see the article). The Ocelot team will decide on a migration
to OpenTelemetry which is highly desired.

29.2 Butterfly

Ocelot providers tracing functionality from the excellent Butterfly project. The code for the Ocelot integration can be
found in Ocelot.Tracing.Butterfly project.

In order to use the tracing please read the Butterfly documentation.

In Ocelot you need to add the NuGet package if you wish to trace a Route:

Install-Package Ocelot.Tracing.Butterfly

In your ConfigureServices method to add Butterfly services: we must call the AddButterfly() extension of the
OcelotBuilder being returned by AddOcelot()Page 93, 1 like below:

services
.AddOcelot()
// This comes from Ocelot.Tracing.Butterfly package
.AddButterfly(option =>
{

// This is the URL that the Butterfly collector server is running on...
option.CollectorUrl = "http://localhost:9618";
option.Service = "Ocelot";

});

Then in your ocelot.json add the following to the Route you want to trace:

"HttpHandlerOptions": {
"UseTracing": true

}

Ocelot will now send tracing information to Butterfly when this Route is called.

94 Chapter 29. Tracing

https://opentracing.io/
https://www.cncf.io/blog/2022/01/31/cncf-archives-the-opentracing-project/
https://opentelemetry.io/
https://github.com/liuhaoyang/butterfly
https://github.com/ThreeMammals/Ocelot/tree/main/src/Ocelot.Tracing.Butterfly
https://github.com/liuhaoyang/butterfly
https://www.nuget.org/packages/Ocelot.Tracing.Butterfly

CHAPTER

THIRTY

WEBSOCKETS

WebSockets Standard by WHATWG organization

Ocelot supports proxying WebSockets with some extra bits. This functionality was requested in issue 212.

In order to get WebSocket proxying working with Ocelot you need to do the following. In your Configure method
you need to tell your application to use WebSockets:

Configure(app =>
{

app.UseWebSockets();
app.UseOcelot().Wait();

})

Then in your ocelot.json add the following to proxy a Route using WebSockets:

{
"UpstreamPathTemplate": "/",
"DownstreamPathTemplate": "/ws",
"DownstreamScheme": "ws",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 5001 }

]
}

With this configuration set Ocelot will match any WebSocket traffic that comes in on / and proxy it to localhost:5001/
ws. To make this clearer Ocelot will receive messages from the upstream client, proxy these to the downstream service,
receive messages from the downstream service and proxy these to the upstream client.

30.1 Links

• WHATWG: WebSockets Standard

• Mozilla Developer Network: The WebSocket API (WebSockets)

• Microsoft Learn: WebSockets support in ASP.NET Core

• Microsoft Learn: WebSockets support in .NET

95

https://websockets.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/ThreeMammals/Ocelot/issues/212
https://websockets.spec.whatwg.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/websockets?view=aspnetcore-7.0
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/websockets

Ocelot, Release 20.0.0

30.2 SignalR

Welcome to Real-time ASP.NET with SignalR

Ocelot supports proxying SignalR. This functionality was requested in issue 344. In order to get WebSocket proxying
working with Ocelot you need to do the following.

First, install SignalR Client NuGet package:

NuGet\Install-Package Microsoft.AspNetCore.SignalR.Client

The package is deprecated, but new versions are still built from the source code. So, SignalR is the part of the ASP.NET
Framework which can be referenced like:

<ItemGroup>
<FrameworkReference Include="Microsoft.AspNetCore.App" />

</ItemGroup>

More information on framework compatibility can be found in instrictions: Use ASP.NET Core APIs in a class library.

Second, you need to tell your application to use SignalR. Complete reference is here: ASP.NET Core SignalR config-
uration

public void ConfigureServices(IServiceCollection services)
{

services.AddOcelot();
services.AddSignalR();

}

Pay attention to configuration of transport level of WebSockets, so configure allowed transports to allow WebSockets
connections.

Then in your ocelot.json add the following to proxy a Route using SignalR. Note normal Ocelot routing rules apply
the main thing is the scheme which is set to ws.

{
"UpstreamHttpMethod": ["GET", "POST", "PUT", "DELETE", "OPTIONS"],
"UpstreamPathTemplate": "/gateway/{catchAll}",
"DownstreamPathTemplate": "/{catchAll}",
"DownstreamScheme": "ws",
"DownstreamHostAndPorts": [
{ "Host": "localhost", "Port": 5001 }

]
}

30.3 Supported

1. Load Balancer

2. Routing

3. Service Discovery

This means that you can set up your downstream services running WebSockets and either have multiple Down-
streamHostAndPorts in your Route config, or hook your Route into a service discovery provider and then load balance
requests. . . Which we think is pretty cool.

96 Chapter 30. Websockets

https://dotnet.microsoft.com/en-us/apps/aspnet/signalr
https://github.com/ThreeMammals/Ocelot/issues/344
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client
https://www.nuget.org/packages/Microsoft.AspNetCore.SignalR.Client#versions-body-tab
https://github.com/dotnet/aspnetcore/tree/main/src/SignalR
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/target-aspnetcore?view=aspnetcore-7.0&tabs=visual-studio
https://learn.microsoft.com/en-us/aspnet/core/signalr/configuration?view=aspnetcore-7.0&tabs=dotnet
https://learn.microsoft.com/en-us/aspnet/core/signalr/configuration?view=aspnetcore-7.0&tabs=dotnet
https://learn.microsoft.com/en-us/aspnet/core/signalr/configuration?view=aspnetcore-7.0&tabs=dotnet#configure-allowed-transports

Ocelot, Release 20.0.0

30.4 Not Supported

Unfortunately a lot of Ocelot features are non WebSocket specific, such as header and http client stuff. We have listed
what will not work below:

1. Tracing

2. Request ID

3. Request Aggregation

4. Rate Limiting

5. Quality of Service

6. Middleware Injection

7. Headers Transformation

8. Delegating Handlers

9. Claims Transformation

10. Caching

11. Authentication1

12. Authorization

We are not 100% sure what will happen with this feature when it gets into the wild, so please make sure you test
thoroughly!

30.5 Future

Websockets and SignalR are being developed intensively by the .NET community, so you need to watch for trends,
releases in official docs regularly:

• WebSockets docs

• SignalR docs

As a team, we cannot advise you on development, but feel free to ask questions, get coding recipes in the Discussions

space of the repository.

Also, we welcome any bug reports, enhancements or proposals regarding this feature.

The Ocelot team considers the current impementation of WebSockets feature obsolete, based on the WebSocketsProx-
yMiddleware class. Websockets are the part of ASP.NET Core framework having native WebSocketMiddleware class.
We have a strong intention to migrate or at least redesign the feature, see issue 1707.

1 If anyone requests it, we might be able to do something with basic authentication.

30.4. Not Supported 97

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/websockets
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction
https://github.com/ThreeMammals/Ocelot/discussions
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20WebSocketsProxyMiddleware&type=code
https://github.com/search?q=repo%3AThreeMammals%2FOcelot%20WebSocketsProxyMiddleware&type=code
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.websockets.websocketmiddleware
https://github.com/ThreeMammals/Ocelot/issues/1707

Ocelot, Release 20.0.0

98 Chapter 30. Websockets

CHAPTER

THIRTYONE

OVERVIEW

This document summarises the build and release process for the project. The build scripts are written using Cake, and
they are defined in ./build.cake. The scripts have been designed to be run by either developers locally or by a build
server (currently CircleCi), with minimal logic defined in the build server itself.

99

https://cakebuild.net/
https://circleci.com/

Ocelot, Release 20.0.0

100 Chapter 31. Overview

CHAPTER

THIRTYTWO

BUILDING

• You can also just run dotnet tool restore && dotnet cake locally! Output will got to the ./artifacts
directory.

• The best way to replicate the CI process is to build Ocelot locally is using the Dockerfile.build file which can be
found in the docker folder in Ocelot root. Use the following command docker build --platform linux/
amd64 -f ./docker/Dockerfile.build . for example. You will need to change the platform flag depend-
ing on your platform.

• There is a Makefile to make it easier to call the various targets in build.cake. The scripts are called with .sh but
can be easily changed to .ps1 if you are using Windows.

• Alternatively you can build the project in VS2022 with the latest .NET 7.0 SDK.

101

https://github.com/ThreeMammals/Ocelot/blob/main/docker/Dockerfile.build
https://github.com/ThreeMammals/Ocelot/tree/main/docker
https://github.com/ThreeMammals/Ocelot/tree/main
https://github.com/ThreeMammals/Ocelot/blob/main/docs/Makefile
https://github.com/ThreeMammals/Ocelot/blob/main/build.cake
https://dotnet.microsoft.com/en-us/download/dotnet/7.0

Ocelot, Release 20.0.0

102 Chapter 32. Building

CHAPTER

THIRTYTHREE

TESTS

The tests should all just run and work as part of the build process. You can of course also run them in Visual Studio.

33.1 Create SSL Cert for Testing

You can do this via OpenSSL:

• Install openssl package (if you are using Windows, download binaries here).

• Generate private key: openssl genrsa 2048 > private.pem

• Generate the self-signed certificate: openssl req -x509 -days 1000 -new -key private.pem -out
public.pem

• If needed, create PFX: openssl pkcs12 -export -in public.pem -inkey private.pem -out
mycert.pfx

103

https://www.openssl.org/
https://github.com/openssl/openssl
https://www.openssl.org/source/

Ocelot, Release 20.0.0

104 Chapter 33. Tests

CHAPTER

THIRTYFOUR

RELEASE PROCESS

• The release process works best with Gitflow branching.

• Contributors can do whatever they want on PRs and feature branches to deliver a feature to develop branch.

• Maintainers can do whatever they want on PRs and merges to main will result in packages being released to
GitHub and NuGet.

Ocelot uses the following process to accept work into the NuGet packages.

1. User creates an issue or picks up an existing issue in GitHub. An issue can be created by converting discussion
topics if necessary and agreed upon.

2. User creates a fork and branches from this (unless a member of core team, they can just create a branch on the
head repo) e.g. feature/xxx, bug/xxx etc. It doesn’t really matter what the “xxx” is. It might make sense to
use the issue number and maybe a short description.

3. When the contributor is happy with their work they can create a pull request against develop in GitHub with their
changes.

4. The maintainer must follow the SemVer support for this is provided by GitVersion. So if the maintainer needs
to make breaking changes, be sure to use the correct commit message, so GitVersion uses the correct SemVer
tags. Do not manually tag the Ocelot repo: this will break things!

5. The Ocelot team will review the PR and if all is good merge it, else they will suggest feedback that the user will
need to act on.

In order to speed up getting a PR the contributor should think about the following:

• Have I covered all my changes with tests at unit and acceptance level?

• Have I updated any documentation that my changes may have affected?

• Does my feature make sense, have I checked all of Ocelot’s other features to make sure it doesn’t already
exist?

In order for a PR to be merged the following must have occured:

• All new code is covered by unit tests.

• All new code has at least 1 acceptance test covering the happy path.

• Tests must have passed locally.

• Build must have green status.

• Build must not have slowed down dramatically.

• The main Ocelot package must not have taken on any non MS dependencies.

6. After the PR is merged to develop the Ocelot NuGet packages will not be updated until a release is created.

105

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://github.com/ThreeMammals/Ocelot/issues
https://github.com/ThreeMammals/Ocelot/discussions
https://semver.org/
https://gitversion.net/docs/

Ocelot, Release 20.0.0

7. When enough work has been completed to justify a new release, develop branch will be merged into main as
release/xxx branch, the release process will begin which builds the code, versions it, pushes artifacts to GitHub
and NuGet packages to NuGet.

8. The final step is to go back to GitHub and close any issues that are now fixed. Note: All linked issues to the
PR in Development settings (right side PR settings) will be closed automatically while merging the PR. It is
imperative that developer uses the “Link an issue from this repository” pop-up dialog of the Development
settings!

34.1 Notes

All NuGet package builds and releases are done with CircleCI, see Pipelines - ThreeMammals/Ocelot.

Only Tom Pallister (owner) and Ocelot Core Team members (maintainers) can merge releases into main at the moment.
This is to ensure there is a final quality gate in place. Tom is mainly looking for security issues on the final merge.

We do follow this development and release process! If anything is unclear or you get stuck in the process, please contact
the Ocelot Core Team members or repository maintainers.

34.2 Quality Gates

To be developed. . .

106 Chapter 34. Release Process

https://circleci.com/gh/ThreeMammals/Ocelot/
https://github.com/orgs/ThreeMammals/teams/ocelot-core

	Big Picture
	Basic Implementation
	With IdentityServer
	Multiple Instances
	With Consul
	With Service Fabric

	Getting Started
	.NET 7.0
	Install NuGet package
	Configuration
	Program

	Contributing
	Not Supported
	Chunked Encoding
	Forwarding a Host header
	Swagger

	Gotchas
	IIS

	Administration
	Providing your own IdentityServer
	Internal IdentityServer
	Administration API
	POST {adminPath}/connect/token
	GET {adminPath}/configuration
	POST {adminPath}/configuration
	DELETE {adminPath}/outputcache/{region}

	Authentication
	JWT Tokens
	Identity Server Bearer Tokens
	Auth0 by Okta
	Allowed Scopes
	More identity providers

	Authorization
	Authorization Middleware

	Caching
	Your Own Caching

	Claims Transformation
	Claims to Claims Transformation
	Claims to Headers Tranformation
	Claims to Query String Parameters Transformation
	Claims to Downstream Path Transformation

	Configuration
	Multiple Environments
	Merging Configuration Files
	Store Configuration in Consul
	Reload JSON Config On Change
	Configuration Key
	Follow Redirects aka HttpHandlerOptions
	SSL Errors
	React to Configuration Changes
	Polling the HasChanged property
	Registering a callback

	DownstreamHttpVersion

	Delegating Handlers
	How to Use
	Order of Execution

	Dependency Injection
	Overview
	IServiceCollection extensions
	The AddOcelot method
	The AddOcelotUsingBuilder method

	The OcelotBuilder class
	The AddDefaultAspNetServices method

	Custom Builder
	The Problem
	Solution

	Error Status Codes
	Client error responses
	Server error responses
	Design

	GraphQL
	Future

	Headers Transformation
	Add to Request
	Add to Response
	Find and Replace
	Pre Downstream Request
	Post Downstream Request
	Placeholders
	Handling 302 Redirects
	X-Forwarded-For
	Future
	Global Headers Transformation

	Kubernetes
	Load Balancer
	Configuration
	Service Discovery
	CookieStickySessions Type
	Custom Load Balancers

	Logging
	Warning

	Method Transformation
	Middleware Injection
	ASP.NET Core Middlewares and Ocelot Pipeline Builder
	Future

	Quality of Service
	Rate Limiting
	Ocelot Own Implementation
	Future and ASP.NET Core Implementation

	Request Aggregation
	Advanced Register Your Own Aggregators
	Basic Expecting JSON from Downstream Services
	Gotchas

	Request ID
	Global
	Route
	Gotcha

	Routing
	Placeholders
	Catch All
	Upstream Host
	Priority
	Dynamic Routing
	Query Strings
	Security Options

	Service Discovery
	Consul
	Consul Provider Type
	PollConsul Provider Type
	Service Definition
	ACL Token

	Eureka
	Dynamic Routing
	Custom Providers
	Custom Provider Sample
	DownstreamService
	ApiGateway

	Service Fabric
	Tracing
	OpenTracing
	OpenTracing Status

	Butterfly

	Websockets
	Links
	SignalR
	Supported
	Not Supported
	Future

	Overview
	Building
	Tests
	Create SSL Cert for Testing

	Release Process
	Notes
	Quality Gates

